BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1527 related articles for article (PubMed ID: 16208632)

  • 1. Novel hydrogel membrane based on copoly(hydroxyethyl methacrylate/p-vinylbenzyl-poly(ethylene oxide)) for biomedical applications: properties and drug release characteristics.
    Arica MY; Bayramoglu G; Arica B; Yalçin E; Ito K; Yagci Y
    Macromol Biosci; 2005 Oct; 5(10):983-92. PubMed ID: 16208632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a novel hydrogel-based intelligent system for controlled drug release.
    He H; Cao X; Lee LJ
    J Control Release; 2004 Mar; 95(3):391-402. PubMed ID: 15023451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of infection-resistant antibiotics-releasing hydrogels rods of poly[hydroxyethyl methacrylate-co-(poly(ethylene glycol)-methacrylate]: biomedical application in a novel rabbit penile prosthesis model.
    Arica MY; Tuğlu D; Başar MM; Kiliç D; Bayramoğlu G; Batislam E
    J Biomed Mater Res B Appl Biomater; 2008 Jul; 86(1):18-28. PubMed ID: 18098187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and characterization of a smart drug delivery system: microsphere in hydrogel.
    Zhang XZ; Jo Lewis P; Chu CC
    Biomaterials; 2005 Jun; 26(16):3299-309. PubMed ID: 15603825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled release of drugs from multi-component biomaterials.
    Zalfen AM; Nizet D; Jérôme C; Jérôme R; Frankenne F; Foidart JM; Maquet V; Lecomte F; Hubert P; Evrard B
    Acta Biomater; 2008 Nov; 4(6):1788-96. PubMed ID: 18583206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels.
    Kimura M; Takai M; Ishihara K
    J Biomed Mater Res A; 2007 Jan; 80(1):45-54. PubMed ID: 16958047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel poly(HEMA-co-METAC)/alginate semi-interpenetrating hydrogels for biomedical applications: synthesis and characterization.
    La Gatta A; Schiraldi C; Esposito A; D'Agostino A; De Rosa A
    J Biomed Mater Res A; 2009 Jul; 90(1):292-302. PubMed ID: 18508339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Release characteristics of novel pH-sensitive p(HEMA-DMAEMA) hydrogels containing 3-(trimethoxy-silyl) propyl methacrylate.
    Brahim S; Narinesingh D; Guiseppi-Elie A
    Biomacromolecules; 2003; 4(5):1224-31. PubMed ID: 12959587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dispersion of microemulsion drops in HEMA hydrogel: a potential ophthalmic drug delivery vehicle.
    Gulsen D; Chauhan A
    Int J Pharm; 2005 Mar; 292(1-2):95-117. PubMed ID: 15725557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulation study of P (VP-co-HEMA) hydrogels: effect of water content on equilibrium structures and mechanical properties.
    Lee SG; Brunello GF; Jang SS; Bucknall DG
    Biomaterials; 2009 Oct; 30(30):6130-41. PubMed ID: 19656562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecular hydrogels based on self-assembly between PEO-PPO-PEO triblock copolymers and alpha-cyclodextrin.
    Ni X; Cheng A; Li J
    J Biomed Mater Res A; 2009 Mar; 88(4):1031-6. PubMed ID: 18404710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable bioadhesive copolymer hydrogels of thermoresponsive poly(N-isopropyl acrylamide) containing zwitterionic polysulfobetaine.
    Chang Y; Yandi W; Chen WY; Shih YJ; Yang CC; Chang Y; Ling QD; Higuchi A
    Biomacromolecules; 2010 Apr; 11(4):1101-10. PubMed ID: 20201492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solubilization and controlled release of a hydrophobic drug using novel micelle-forming ABC triblock copolymers.
    Tang Y; Liu SY; Armes SP; Billingham NC
    Biomacromolecules; 2003; 4(6):1636-45. PubMed ID: 14606890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physicochemical characterisation and biological evaluation of hydrogel-poly(epsilon-caprolactone) interpenetrating polymer networks as novel urinary biomaterials.
    Jones DS; McLaughlin DW; McCoy CP; Gorman SP
    Biomaterials; 2005 May; 26(14):1761-70. PubMed ID: 15576150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrosynthesis of hydrogel films on metal substrates for the development of coatings with tunable drug delivery performances.
    De Giglio E; Cometa S; Satriano C; Sabbatini L; Zambonin PG
    J Biomed Mater Res A; 2009 Mar; 88(4):1048-57. PubMed ID: 18404708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonfouling biomaterials based on polyethylene oxide-containing amphiphilic triblock copolymers as surface modifying additives: solid state structure of PEO-copolymer/polyurethane blends.
    Tan J; Brash JL
    J Biomed Mater Res A; 2008 Jun; 85(4):862-72. PubMed ID: 17896775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of poly(sorbitan methacrylate) hydrogel by free-radical polymerization.
    Jeong GT; Lee KM; Yang HS; Park SH; Park JH; Sunwoo C; Ryu HW; Kim D; Lee WT; Kim HS; Cha WS; Park DH
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):935-46. PubMed ID: 18478446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small-angle X-ray scattering study of the interaction of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers with lipid bilayers.
    Firestone MA; Wolf AC; Seifert S
    Biomacromolecules; 2003; 4(6):1539-49. PubMed ID: 14606878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microporous structure and drug release kinetics of polymeric nanoparticles.
    Sant S; Thommes M; Hildgen P
    Langmuir; 2008 Jan; 24(1):280-7. PubMed ID: 18052222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and characterization of ophthalmically compatible hydrogels composed of poly(dimethyl siloxane-urethane)/Pluronic F127.
    Lin CH; Lin WC; Yang MC
    Colloids Surf B Biointerfaces; 2009 Jun; 71(1):36-44. PubMed ID: 19188049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 77.