These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 16208706)
1. Angiogenesis with pericyte abnormalities in a transgenic model of prostate carcinoma. Ozawa MG; Yao VJ; Chanthery YH; Troncoso P; Uemura A; Varner AS; Kasman IM; Pasqualini R; Arap W; McDonald DM Cancer; 2005 Nov; 104(10):2104-15. PubMed ID: 16208706 [TBL] [Abstract][Full Text] [Related]
2. Sorafenib's inhibition of prostate cancer growth in transgenic adenocarcinoma mouse prostate mice and its differential effects on endothelial and pericyte growth during tumor angiogenesis. Bono AV; Pannellini T; Liberatore M; Montironi R; Cunico SC; Cheng L; Sasso F; Musiani P; Iezzi M Anal Quant Cytol Histol; 2010 Jun; 32(3):136-45. PubMed ID: 20701066 [TBL] [Abstract][Full Text] [Related]
3. Vascular endothelial growth factor expression and capillary architecture in high-grade PIN and prostate cancer in untreated and androgen-ablated patients. Mazzucchelli R; Montironi R; Santinelli A; Lucarini G; Pugnaloni A; Biagini G Prostate; 2000 Sep; 45(1):72-9. PubMed ID: 10960845 [TBL] [Abstract][Full Text] [Related]
4. Utilization of bone marrow-derived endothelial cell precursors in spontaneous prostate tumors varies with tumor grade. Li H; Gerald WL; Benezra R Cancer Res; 2004 Sep; 64(17):6137-43. PubMed ID: 15342397 [TBL] [Abstract][Full Text] [Related]
5. Prostatic angiogenic responses in late life: antiangiogenic therapy influences and relation with the glandular microenvironment in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Montico F; Kido LA; Hetzl AC; Cagnon VH Prostate; 2015 Apr; 75(5):484-99. PubMed ID: 25521760 [TBL] [Abstract][Full Text] [Related]
6. Cathepsin B in angiogenesis of human prostate: an immunohistochemical and immunoelectron microscopic analysis. Sinha AA; Gleason DF; Staley NA; Wilson MJ; Sameni M; Sloane BF Anat Rec; 1995 Mar; 241(3):353-62. PubMed ID: 7538734 [TBL] [Abstract][Full Text] [Related]
7. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Morikawa S; Baluk P; Kaidoh T; Haskell A; Jain RK; McDonald DM Am J Pathol; 2002 Mar; 160(3):985-1000. PubMed ID: 11891196 [TBL] [Abstract][Full Text] [Related]
8. Angiogenesis and prostate cancer: identification of a molecular progression switch. Huss WJ; Hanrahan CF; Barrios RJ; Simons JW; Greenberg NM Cancer Res; 2001 Mar; 61(6):2736-43. PubMed ID: 11289156 [TBL] [Abstract][Full Text] [Related]
9. Stage-specific inhibitory effects and associated mechanisms of silibinin on tumor progression and metastasis in transgenic adenocarcinoma of the mouse prostate model. Raina K; Rajamanickam S; Singh RP; Deep G; Chittezhath M; Agarwal R Cancer Res; 2008 Aug; 68(16):6822-30. PubMed ID: 18701508 [TBL] [Abstract][Full Text] [Related]
10. Vascular pericyte density and angiogenesis associated with adenocarcinoma of the prostate. Killingsworth MC; Wu X Pathobiology; 2011; 78(1):24-34. PubMed ID: 21474973 [TBL] [Abstract][Full Text] [Related]
11. Targeting of pericytes diminishes neovascularization and lymphangiogenesis in prostate cancer. Ozerdem U Prostate; 2006 Feb; 66(3):294-304. PubMed ID: 16245280 [TBL] [Abstract][Full Text] [Related]
12. Regression of mouse prostatic intraepithelial neoplasia by nonsteroidal anti-inflammatory drugs in the transgenic adenocarcinoma mouse prostate model. Narayanan BA; Narayanan NK; Pittman B; Reddy BS Clin Cancer Res; 2004 Nov; 10(22):7727-37. PubMed ID: 15570007 [TBL] [Abstract][Full Text] [Related]
13. Functional neoangiogenesis imaging of genetically engineered mouse prostate cancer using three-dimensional power Doppler ultrasound. Xuan JW; Bygrave M; Jiang H; Valiyeva F; Dunmore-Buyze J; Holdsworth DW; Izawa JI; Bauman G; Moussa M; Winter SF; Greenberg NM; Chin JL; Drangova M; Fenster A; Lacefield JC Cancer Res; 2007 Mar; 67(6):2830-9. PubMed ID: 17363606 [TBL] [Abstract][Full Text] [Related]
15. MYC overexpression induces prostatic intraepithelial neoplasia and loss of Nkx3.1 in mouse luminal epithelial cells. Iwata T; Schultz D; Hicks J; Hubbard GK; Mutton LN; Lotan TL; Bethel C; Lotz MT; Yegnasubramanian S; Nelson WG; Dang CV; Xu M; Anele U; Koh CM; Bieberich CJ; De Marzo AM PLoS One; 2010 Feb; 5(2):e9427. PubMed ID: 20195545 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of angiogenic apelin/apelin receptor axis in normal prostate, high grade prostatic intraepithelial neoplasia and prostatic adenocarcinoma. Soylu H; Unal B; Aksu K; Avci S; Caylan AE; Ustunel I I Malays J Pathol; 2022 Dec; 44(3):461-467. PubMed ID: 36591713 [TBL] [Abstract][Full Text] [Related]
17. Loss of MyD88 leads to more aggressive TRAMP prostate cancer and influences tumor infiltrating lymphocytes. Peek EM; Song W; Zhang H; Huang J; Chin AI Prostate; 2015 Apr; 75(5):463-73. PubMed ID: 25597486 [TBL] [Abstract][Full Text] [Related]
18. Silibinin inhibits established prostate tumor growth, progression, invasion, and metastasis and suppresses tumor angiogenesis and epithelial-mesenchymal transition in transgenic adenocarcinoma of the mouse prostate model mice. Singh RP; Raina K; Sharma G; Agarwal R Clin Cancer Res; 2008 Dec; 14(23):7773-80. PubMed ID: 19047104 [TBL] [Abstract][Full Text] [Related]
19. Characterization of initiation of angiogenesis in early stages of prostate adenocarcinoma development and progression in a transgenic murine model. Gabril M; Xuan J; Moussa M; Dinney CP; Chin JL; Izawa JI Urology; 2004 Dec; 64(6):1233-7. PubMed ID: 15596214 [TBL] [Abstract][Full Text] [Related]
20. A probasin-large T antigen transgenic mouse line develops prostate adenocarcinoma and neuroendocrine carcinoma with metastatic potential. Masumori N; Thomas TZ; Chaurand P; Case T; Paul M; Kasper S; Caprioli RM; Tsukamoto T; Shappell SB; Matusik RJ Cancer Res; 2001 Mar; 61(5):2239-49. PubMed ID: 11280793 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]