These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 16208911)
1. Controlled induction, enhancement, and guidance of neuronal growth cones by use of line optical tweezers. Mohanty SK; Sharma M; Panicker MM; Gupta PK Opt Lett; 2005 Oct; 30(19):2596-8. PubMed ID: 16208911 [TBL] [Abstract][Full Text] [Related]
2. Multiplexed force measurements on live cells with holographic optical tweezers. Mejean CO; Schaefer AW; Millman EA; Forscher P; Dufresne ER Opt Express; 2009 Apr; 17(8):6209-17. PubMed ID: 19365444 [TBL] [Abstract][Full Text] [Related]
3. Manipulation of mammalian cells using a single-fiber optical microbeam. Mohanty SK; Mohanty KS; Berns MW J Biomed Opt; 2008; 13(5):054049. PubMed ID: 19021429 [TBL] [Abstract][Full Text] [Related]
4. Tilt control in optical tweezers. Ichikawa M; Kubo K; Yoshikawa K; Kimura Y J Biomed Opt; 2008; 13(1):010503. PubMed ID: 18315348 [TBL] [Abstract][Full Text] [Related]
5. Optimizing your optical tweezers. Evanko D Nat Methods; 2006 Aug; 3(8):584-5. PubMed ID: 16894652 [TBL] [Abstract][Full Text] [Related]
6. Magneto-optical tweezers built around an inverted microscope. Claudet C; Bednar J Appl Opt; 2005 Jun; 44(17):3454-7. PubMed ID: 16007842 [TBL] [Abstract][Full Text] [Related]
7. Micro magnetic tweezers for nanomanipulation inside live cells. de Vries AH; Krenn BE; van Driel R; Kanger JS Biophys J; 2005 Mar; 88(3):2137-44. PubMed ID: 15556976 [TBL] [Abstract][Full Text] [Related]
8. On chip single-cell separation and immobilization using optical tweezers and thermosensitive hydrogel. Arai F; Ng C; Maruyama H; Ichikawa A; El-Shimy H; Fukuda T Lab Chip; 2005 Dec; 5(12):1399-403. PubMed ID: 16286972 [TBL] [Abstract][Full Text] [Related]
9. Negative dielectrophoretic force assisted construction of ordered neuronal networks on cell positioning bioelectronic chips. Yu Z; Xiang G; Pan L; Huang L; Yu Z; Xing W; Cheng J Biomed Microdevices; 2004 Dec; 6(4):311-24. PubMed ID: 15548878 [TBL] [Abstract][Full Text] [Related]
10. Guiding neuronal growth with light. Ehrlicher A; Betz T; Stuhrmann B; Koch D; Milner V; Raizen MG; Kas J Proc Natl Acad Sci U S A; 2002 Dec; 99(25):16024-8. PubMed ID: 12456879 [TBL] [Abstract][Full Text] [Related]
11. Manipulation and spectroscopy of a single particle by use of white-light optical tweezers. Li P; Shi K; Liu Z Opt Lett; 2005 Jan; 30(2):156-8. PubMed ID: 15675698 [TBL] [Abstract][Full Text] [Related]
13. Retrograde flow rate is increased in growth cones from myosin IIB knockout mice. Brown ME; Bridgman PC J Cell Sci; 2003 Mar; 116(Pt 6):1087-94. PubMed ID: 12584251 [TBL] [Abstract][Full Text] [Related]
14. Optical micromanipulation methods for controlled rotation, transportation, and microinjection of biological objects. Mohanty SK; Gupta PK Methods Cell Biol; 2007; 82():563-99. PubMed ID: 17586272 [TBL] [Abstract][Full Text] [Related]
15. Dynamic measurements of transverse optical trapping force in biological applications. Ermilov S; Anvari B Ann Biomed Eng; 2004 Jul; 32(7):1016-26. PubMed ID: 15298439 [TBL] [Abstract][Full Text] [Related]
16. Optical trapping of a spherically symmetric sphere in the ray-optics regime: a model for optical tweezers upon cells. Chang YR; Hsu L; Chi S Appl Opt; 2006 Jun; 45(16):3885-92. PubMed ID: 16724154 [TBL] [Abstract][Full Text] [Related]
17. Dimensionless parameters for the design of optical traps and laser guidance systems. Nahmias YK; Gao BZ; Odde DJ Appl Opt; 2004 Jul; 43(20):3999-4006. PubMed ID: 15285089 [TBL] [Abstract][Full Text] [Related]