BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 16209102)

  • 1. Receptors for endogenous and heterogenous hydroxamate siderophores in Staphylococcus aureus B 471.
    Wysocki P; Lisiecki P; Mikucki J
    Pol J Microbiol; 2005; 54(2):97-103. PubMed ID: 16209102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular characterization of the iron-hydroxamate uptake system in Staphylococcus aureus.
    Cabrera G; Xiong A; Uebel M; Singh VK; Jayaswal RK
    Appl Environ Microbiol; 2001 Feb; 67(2):1001-3. PubMed ID: 11157278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of SirABC in iron-siderophore import in Staphylococcus aureus.
    Dale SE; Sebulsky MT; Heinrichs DE
    J Bacteriol; 2004 Dec; 186(24):8356-62. PubMed ID: 15576785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Nitrosomonas europaea NitABC iron transporter in the uptake of Fe3+-siderophore complexes.
    Vajrala N; Sayavedra-Soto LA; Bottomley PJ; Arp DJ
    Arch Microbiol; 2010 Nov; 192(11):899-908. PubMed ID: 20737137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional characterization of the Staphylococcus aureus virulence factor and vaccine candidate FhuD2.
    Mariotti P; Malito E; Biancucci M; Lo Surdo P; Mishra RP; Nardi-Dei V; Savino S; Nissum M; Spraggon G; Grandi G; Bagnoli F; Bottomley MJ
    Biochem J; 2013 Feb; 449(3):683-93. PubMed ID: 23113737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial iron transport: mechanisms, genetics, and regulation.
    Braun V; Hantke K; Köster W
    Met Ions Biol Syst; 1998; 35():67-145. PubMed ID: 9444760
    [No Abstract]   [Full Text] [Related]  

  • 7. Identification and characterization of a membrane permease involved in iron-hydroxamate transport in Staphylococcus aureus.
    Sebulsky MT; Hohnstein D; Hunter MD; Heinrichs DE
    J Bacteriol; 2000 Aug; 182(16):4394-400. PubMed ID: 10913070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a positively charged platform in Staphylococcus aureus HtsA that is essential for ferric staphyloferrin A transport.
    Cooper JD; Hannauer M; Marolda CL; Briere LA; Heinrichs DE
    Biochemistry; 2014 Aug; 53(31):5060-9. PubMed ID: 25050909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic control of hydroxamate-mediated iron uptake in Escherichia coli.
    Kadner RJ; Heller K; Coulton JW; Braun V
    J Bacteriol; 1980 Jul; 143(1):256-64. PubMed ID: 6249788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of Fe3+-acinetoferrin analogs as an iron source by Mycobacterium tuberculosis.
    Rodriguez GM; Gardner R; Kaur N; Phanstiel O
    Biometals; 2008 Feb; 21(1):93-103. PubMed ID: 17401548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of fhuD1 and fhuD2, two genes involved in iron-hydroxamate uptake in Staphylococcus aureus.
    Sebulsky MT; Heinrichs DE
    J Bacteriol; 2001 Sep; 183(17):4994-5000. PubMed ID: 11489851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Siderophore-iron uptake in saccharomyces cerevisiae. Identification of ferrichrome and fusarinine transporters.
    Yun CW; Tiedeman JS; Moore RE; Philpott CC
    J Biol Chem; 2000 May; 275(21):16354-9. PubMed ID: 10748025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron uptake by fungi: contrasted mechanisms with internal or external reduction.
    De Luca NG; Wood PM
    Adv Microb Physiol; 2000; 43():39-74. PubMed ID: 10907554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Bradyrhizobium japonicum fegA gene encodes an iron-regulated outer membrane protein with similarity to hydroxamate-type siderophore receptors.
    LeVier K; Guerinot ML
    J Bacteriol; 1996 Dec; 178(24):7265-75. PubMed ID: 8955412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear fusigen as the major hydroxamate siderophore of the ectomycorrhizal Basidiomycota Laccaria laccata and Laccaria bicolor.
    Haselwandter K; Häninger G; Ganzera M; Haas H; Nicholson G; Winkelmann G
    Biometals; 2013 Dec; 26(6):969-79. PubMed ID: 24057327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FoxB of Pseudomonas aeruginosa functions in the utilization of the xenosiderophores ferrichrome, ferrioxamine B, and schizokinen: evidence for transport redundancy at the inner membrane.
    Cuív PO; Keogh D; Clarke P; O'Connell M
    J Bacteriol; 2007 Jan; 189(1):284-7. PubMed ID: 17056746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FhuD1, a ferric hydroxamate-binding lipoprotein in Staphylococcus aureus: a case of gene duplication and lateral transfer.
    Sebulsky MT; Speziali CD; Shilton BH; Edgell DR; Heinrichs DE
    J Biol Chem; 2004 Dec; 279(51):53152-9. PubMed ID: 15475351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential role for extracellular glutathione-dependent ferric reductase in utilization of environmental and host ferric compounds by Histoplasma capsulatum.
    Timmerman MM; Woods JP
    Infect Immun; 2001 Dec; 69(12):7671-8. PubMed ID: 11705947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane dynamics of the amphiphilic siderophore, acinetoferrin.
    Luo M; Fadeev EA; Groves JT
    J Am Chem Soc; 2005 Feb; 127(6):1726-36. PubMed ID: 15701007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular characterization of Haemophilus parasuis ferric hydroxamate uptake (fhu) genes and constitutive expression of the FhuA receptor.
    del Río ML; Navas J; Martín AJ; Gutiérrez CB; Rodríguez-Barbosa JI; Rodríguez Ferri EF
    Vet Res; 2006; 37(1):49-59. PubMed ID: 16336924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.