These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 16209102)
1. Receptors for endogenous and heterogenous hydroxamate siderophores in Staphylococcus aureus B 471. Wysocki P; Lisiecki P; Mikucki J Pol J Microbiol; 2005; 54(2):97-103. PubMed ID: 16209102 [TBL] [Abstract][Full Text] [Related]
2. Molecular characterization of the iron-hydroxamate uptake system in Staphylococcus aureus. Cabrera G; Xiong A; Uebel M; Singh VK; Jayaswal RK Appl Environ Microbiol; 2001 Feb; 67(2):1001-3. PubMed ID: 11157278 [TBL] [Abstract][Full Text] [Related]
3. Involvement of SirABC in iron-siderophore import in Staphylococcus aureus. Dale SE; Sebulsky MT; Heinrichs DE J Bacteriol; 2004 Dec; 186(24):8356-62. PubMed ID: 15576785 [TBL] [Abstract][Full Text] [Related]
4. Role of Nitrosomonas europaea NitABC iron transporter in the uptake of Fe3+-siderophore complexes. Vajrala N; Sayavedra-Soto LA; Bottomley PJ; Arp DJ Arch Microbiol; 2010 Nov; 192(11):899-908. PubMed ID: 20737137 [TBL] [Abstract][Full Text] [Related]
5. Structural and functional characterization of the Staphylococcus aureus virulence factor and vaccine candidate FhuD2. Mariotti P; Malito E; Biancucci M; Lo Surdo P; Mishra RP; Nardi-Dei V; Savino S; Nissum M; Spraggon G; Grandi G; Bagnoli F; Bottomley MJ Biochem J; 2013 Feb; 449(3):683-93. PubMed ID: 23113737 [TBL] [Abstract][Full Text] [Related]
6. Bacterial iron transport: mechanisms, genetics, and regulation. Braun V; Hantke K; Köster W Met Ions Biol Syst; 1998; 35():67-145. PubMed ID: 9444760 [No Abstract] [Full Text] [Related]
7. Identification and characterization of a membrane permease involved in iron-hydroxamate transport in Staphylococcus aureus. Sebulsky MT; Hohnstein D; Hunter MD; Heinrichs DE J Bacteriol; 2000 Aug; 182(16):4394-400. PubMed ID: 10913070 [TBL] [Abstract][Full Text] [Related]
8. Identification of a positively charged platform in Staphylococcus aureus HtsA that is essential for ferric staphyloferrin A transport. Cooper JD; Hannauer M; Marolda CL; Briere LA; Heinrichs DE Biochemistry; 2014 Aug; 53(31):5060-9. PubMed ID: 25050909 [TBL] [Abstract][Full Text] [Related]
9. Genetic control of hydroxamate-mediated iron uptake in Escherichia coli. Kadner RJ; Heller K; Coulton JW; Braun V J Bacteriol; 1980 Jul; 143(1):256-64. PubMed ID: 6249788 [TBL] [Abstract][Full Text] [Related]
10. Utilization of Fe3+-acinetoferrin analogs as an iron source by Mycobacterium tuberculosis. Rodriguez GM; Gardner R; Kaur N; Phanstiel O Biometals; 2008 Feb; 21(1):93-103. PubMed ID: 17401548 [TBL] [Abstract][Full Text] [Related]
11. Identification and characterization of fhuD1 and fhuD2, two genes involved in iron-hydroxamate uptake in Staphylococcus aureus. Sebulsky MT; Heinrichs DE J Bacteriol; 2001 Sep; 183(17):4994-5000. PubMed ID: 11489851 [TBL] [Abstract][Full Text] [Related]
12. Siderophore-iron uptake in saccharomyces cerevisiae. Identification of ferrichrome and fusarinine transporters. Yun CW; Tiedeman JS; Moore RE; Philpott CC J Biol Chem; 2000 May; 275(21):16354-9. PubMed ID: 10748025 [TBL] [Abstract][Full Text] [Related]
13. Iron uptake by fungi: contrasted mechanisms with internal or external reduction. De Luca NG; Wood PM Adv Microb Physiol; 2000; 43():39-74. PubMed ID: 10907554 [TBL] [Abstract][Full Text] [Related]
14. The Bradyrhizobium japonicum fegA gene encodes an iron-regulated outer membrane protein with similarity to hydroxamate-type siderophore receptors. LeVier K; Guerinot ML J Bacteriol; 1996 Dec; 178(24):7265-75. PubMed ID: 8955412 [TBL] [Abstract][Full Text] [Related]
15. Linear fusigen as the major hydroxamate siderophore of the ectomycorrhizal Basidiomycota Laccaria laccata and Laccaria bicolor. Haselwandter K; Häninger G; Ganzera M; Haas H; Nicholson G; Winkelmann G Biometals; 2013 Dec; 26(6):969-79. PubMed ID: 24057327 [TBL] [Abstract][Full Text] [Related]
16. FoxB of Pseudomonas aeruginosa functions in the utilization of the xenosiderophores ferrichrome, ferrioxamine B, and schizokinen: evidence for transport redundancy at the inner membrane. Cuív PO; Keogh D; Clarke P; O'Connell M J Bacteriol; 2007 Jan; 189(1):284-7. PubMed ID: 17056746 [TBL] [Abstract][Full Text] [Related]
17. FhuD1, a ferric hydroxamate-binding lipoprotein in Staphylococcus aureus: a case of gene duplication and lateral transfer. Sebulsky MT; Speziali CD; Shilton BH; Edgell DR; Heinrichs DE J Biol Chem; 2004 Dec; 279(51):53152-9. PubMed ID: 15475351 [TBL] [Abstract][Full Text] [Related]
18. Potential role for extracellular glutathione-dependent ferric reductase in utilization of environmental and host ferric compounds by Histoplasma capsulatum. Timmerman MM; Woods JP Infect Immun; 2001 Dec; 69(12):7671-8. PubMed ID: 11705947 [TBL] [Abstract][Full Text] [Related]
19. The role of FoxA, FiuA, and FpvB in iron acquisition via hydroxamate-type siderophores in Pseudomonas aeruginosa. Will V; Frey C; Normant V; Kuhn L; Chicher J; Volck F; Schalk IJ Sci Rep; 2024 Aug; 14(1):18795. PubMed ID: 39138320 [TBL] [Abstract][Full Text] [Related]
20. Membrane dynamics of the amphiphilic siderophore, acinetoferrin. Luo M; Fadeev EA; Groves JT J Am Chem Soc; 2005 Feb; 127(6):1726-36. PubMed ID: 15701007 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]