BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 16209102)

  • 41. [Utilization of siderophores from the Acinetobacter genus by staphylococcal bacilli].
    Szarapińska-Kwaszewska J; Gospodarek E; Mikucki J
    Med Dosw Mikrobiol; 1998; 50(1-2):9-19. PubMed ID: 9857609
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Requirement of Staphylococcus aureus ATP-binding cassette-ATPase FhuC for iron-restricted growth and evidence that it functions with more than one iron transporter.
    Speziali CD; Dale SE; Henderson JA; Vinés ED; Heinrichs DE
    J Bacteriol; 2006 Mar; 188(6):2048-55. PubMed ID: 16513734
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular characterization of staphyloferrin B biosynthesis in Staphylococcus aureus.
    Cheung J; Beasley FC; Liu S; Lajoie GA; Heinrichs DE
    Mol Microbiol; 2009 Nov; 74(3):594-608. PubMed ID: 19775248
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hydroxamate iron complex with phenoloxidase activity acting on lignin and chlorolignins.
    Parra C; Santiago MF; Rodriguez J; Durán N
    Biochem Biophys Res Commun; 1998 Aug; 249(3):719-22. PubMed ID: 9731204
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Trihydroxamate siderophore-fluoroquinolone conjugates are selective sideromycin antibiotics that target Staphylococcus aureus.
    Wencewicz TA; Long TE; Möllmann U; Miller MJ
    Bioconjug Chem; 2013 Mar; 24(3):473-86. PubMed ID: 23350642
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of the siderophores from Vibrio hollisae and Vibrio mimicus as aerobactin.
    Okujo N; Yamamoto S
    FEMS Microbiol Lett; 1994 May; 118(1-2):187-92. PubMed ID: 8013878
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effects of structurally different siderophores on the organelles of Pinus sylvestris root cells.
    Mucha J; Gabała E; Zadworny M
    Planta; 2019 Jun; 249(6):1747-1760. PubMed ID: 30820648
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stereochemical aspects of iron transport in Mycelia sterilia EP-76.
    Adjimani JP; Emery T
    J Bacteriol; 1988 Mar; 170(3):1377-9. PubMed ID: 2963807
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hydroxamate production by Aquaspirillum magnetotacticum.
    Paoletti LC; Blakemore RP
    J Bacteriol; 1986 Jul; 167(1):73-6. PubMed ID: 2941414
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The influence of iron occurring in the growth medium of Staphylococcus aureus on the bacterial adhesion to collagen.
    Krajewska-Pietrasik D; Sobiś-Glinkowska M; Sidorczyk Z; Mikucki J
    Acta Microbiol Pol; 1997; 46(4):349-56. PubMed ID: 9516982
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Siderophore mediated iron(III) uptake in Gliocladium virens. 2. Role of ferric mono- and dihydroxamates as iron transport agents.
    Jalal MA; Love SK; van der Helm D
    J Inorg Biochem; 1987 Apr; 29(4):259-67. PubMed ID: 2953864
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural Basis for Xenosiderophore Utilization by the Human Pathogen Staphylococcus aureus.
    Endicott NP; Lee E; Wencewicz TA
    ACS Infect Dis; 2017 Jul; 3(7):542-553. PubMed ID: 28505405
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Vibrio Iron Transport: Evolutionary Adaptation to Life in Multiple Environments.
    Payne SM; Mey AR; Wyckoff EE
    Microbiol Mol Biol Rev; 2016 Mar; 80(1):69-90. PubMed ID: 26658001
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Netilmicin influences siderophores production and iron receptor expression in Escherichia coli.
    Mignini F; Balducci E; Covelli I
    New Microbiol; 1994 Oct; 17(4):337-40. PubMed ID: 7861991
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Staphylococcus aureus siderophore-mediated iron-acquisition system plays a dominant and essential role in the utilization of transferrin-bound iron.
    Park RY; Sun HY; Choi MH; Bai YH; Shin SH
    J Microbiol; 2005 Apr; 43(2):183-90. PubMed ID: 15880095
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Carrier-facilitated bulk liquid membrane transport of iron(III)-siderophore complexes utilizing first coordination sphere recognition.
    Wirgau JI; Crumbliss AL
    Inorg Chem; 2003 Sep; 42(18):5762-70. PubMed ID: 12950227
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Acquisition of iron by Trichodesmium and associated bacteria in culture.
    Roe KL; Barbeau K; Mann EL; Haygood MG
    Environ Microbiol; 2012 Jul; 14(7):1681-95. PubMed ID: 22118517
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mn(II)/Mn(III) and Fe(III) binding capability of two Aspergillus fumigatus siderophores, desferricrocin and N', N″, N‴-triacetylfusarinine C.
    Farkas E; Szabó O; Parajdi-Losonczi PL; Balla G; Pócsi I
    J Inorg Biochem; 2014 Oct; 139():30-7. PubMed ID: 24959697
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Iron acquisition by Neisseria meningitidis in vitro.
    Archibald FS; DeVoe IW
    Infect Immun; 1980 Feb; 27(2):322-34. PubMed ID: 6445876
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Acquisition of iron by alkaliphilic bacillus species.
    McMillan DG; Velasquez I; Nunn BL; Goodlett DR; Hunter KA; Lamont I; Sander SG; Cook GM
    Appl Environ Microbiol; 2010 Oct; 76(20):6955-61. PubMed ID: 20802068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.