These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 16209553)

  • 1. Separation of genomic DNA from plasmid DNA by selective renaturation with immobilized metal affinity capture.
    Cano T; Murphy JC; Fox GE; Willson RC
    Biotechnol Prog; 2005; 21(5):1472-7. PubMed ID: 16209553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleic acid separations utilizing immobilized metal affinity chromatography.
    Murphy JC; Jewell DL; White KI; Fox GE; Willson RC
    Biotechnol Prog; 2003; 19(3):982-6. PubMed ID: 12790665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LacO-LacI interaction in affinity adsorption of plasmid DNA.
    Forde GM; Ghose S; Slater NK; Hine AV; Darby RA; Hitchcock AG
    Biotechnol Bioeng; 2006 Sep; 95(1):67-75. PubMed ID: 16646090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of chromosomal DNA during alkaline lysis and removal by reverse micellar extraction.
    Tschapalda K; Streitner N; Voss C; Flaschel E
    Appl Microbiol Biotechnol; 2009 Aug; 84(1):199-204. PubMed ID: 19562335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmid DNA purification by selective calcium silicate adsorption of closely related impurities.
    Winters MA; Richter JD; Sagar SL; Lee AL; Lander RJ
    Biotechnol Prog; 2003; 19(2):440-7. PubMed ID: 12675585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of genomic DNA, RNA, and open circular plasmid DNA from supercoiled plasmid DNA by combining denaturation, selective renaturation and aqueous two-phase extraction.
    Frerix A; Geilenkirchen P; Müller M; Kula MR; Hubbuch J
    Biotechnol Bioeng; 2007 Jan; 96(1):57-66. PubMed ID: 16937402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of engineering flow conditions on plasmid DNA yield and purity in chemical cell lysis operations.
    Meacle FJ; Lander R; Ayazi Shamlou P; Titchener-Hooker NJ
    Biotechnol Bioeng; 2004 Aug; 87(3):293-302. PubMed ID: 15281104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Affinity purification of plasmid DNA by temperature-triggered precipitation.
    Kostal J; Mulchandani A; Chen W
    Biotechnol Bioeng; 2004 Feb; 85(3):293-7. PubMed ID: 14748084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation and scale-up of plasmid DNA purification by phenyl-boronic acid chromatography.
    Gomes AG; Azevedo AM; Aires-Barros MR; Prazeres DM
    J Sep Sci; 2012 Nov; 35(22):3190-6. PubMed ID: 23175141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid isolation of high quality, multimeric plasmid DNA using zwitterionic detergent.
    Chowdhury EH; Akaike T
    J Biotechnol; 2005 Oct; 119(4):343-7. PubMed ID: 16095744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monolith-based immobilized metal affinity chromatography increases production efficiency for plasmid DNA purification.
    Shin MJ; Tan L; Jeong MH; Kim JH; Choe WS
    J Chromatogr A; 2011 Aug; 1218(31):5273-8. PubMed ID: 21733525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutral additives enhance the metal-chelate affinity adsorption of nucleic acids: role of water activity.
    Potty AS; Fu JY; Balan S; Haymore BL; Hill DJ; Fox GE; Willson RC
    J Chromatogr A; 2006 May; 1115(1-2):88-92. PubMed ID: 16600263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale capture and partial purification of plasmid DNA using anion-exchange membrane capsules.
    Zhang S; Krivosheyeva A; Nochumson S
    Biotechnol Appl Biochem; 2003 Jun; 37(Pt 3):245-9. PubMed ID: 12656677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-elutability of nucleic acids from metal-chelate affinity adsorbents: enhancement by control of surface charge density.
    Fu JY; Potty AS; Fox GE; Willson RC
    J Mol Recognit; 2006; 19(4):348-53. PubMed ID: 16865664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supercoiled plasmid DNA purification by integrating membrane technology with a monolithic chromatography.
    Nunes C; Sousa A; Nunes JC; Morão AM; Sousa F; Queiroz JA
    J Sep Sci; 2014 Jun; 37(11):1229-36. PubMed ID: 24634407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Affinity purification of plasmid DNA directly from crude bacterial cell lysates.
    Darby RA; Forde GM; Slater NK; Hine AV
    Biotechnol Bioeng; 2007 Dec; 98(5):1103-8. PubMed ID: 17497740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proposal for a better integration of bacterial lysis into the production of plasmid DNA at large scale.
    O'Mahony K; Freitag R; Hilbrig F; Müller P; Schumacher I
    J Biotechnol; 2005 Sep; 119(2):118-32. PubMed ID: 15993505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Affinity adsorption of plasmid DNA.
    Ghose S; Forde GM; Slater NK
    Biotechnol Prog; 2004; 20(3):841-50. PubMed ID: 15176890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile recovery of individual high-molecular-weight, low-copy-number natural plasmids for genomic sequencing.
    Williams LE; Detter C; Barry K; Lapidus A; Summers AO
    Appl Environ Microbiol; 2006 Jul; 72(7):4899-906. PubMed ID: 16820486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacteria capture, lysate clearance, and plasmid DNA extraction using pH-sensitive multifunctional magnetic nanoparticles.
    Shan Z; Wu Q; Wang X; Zhou Z; Oakes KD; Zhang X; Huang Q; Yang W
    Anal Biochem; 2010 Mar; 398(1):120-2. PubMed ID: 19903448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.