These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 16209571)

  • 1. Probing potential medium effects on phosphate ester bonds using 18O isotope shifts on 31P NMR.
    Sorensen-Stowell K; Hengge AC
    J Org Chem; 2005 Oct; 70(21):8303-8. PubMed ID: 16209571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examination of P-OR bridging bond orders in phosphate monoesters using (18)O isotope shifts in 31P NMR.
    Sorensen-Stowell K; Hengge AC
    J Org Chem; 2005 Jun; 70(12):4805-9. PubMed ID: 15932321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition state differences in hydrolysis reactions of alkyl versus aryl phosphate monoester monoanions.
    Grzyska PK; Czyryca PG; Purcell J; Hengge AC
    J Am Chem Soc; 2003 Oct; 125(43):13106-11. PubMed ID: 14570483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition-state structures for enzymatic and alkaline phosphotriester hydrolysis.
    Caldwell SR; Raushel FM; Weiss PM; Cleland WW
    Biochemistry; 1991 Jul; 30(30):7444-50. PubMed ID: 1649629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generality of solvation effects on the hydrolysis rates of phosphate monoesters and their possible relevance to enzymatic catalysis.
    Grzyska PK; Czyryca PG; Golightly J; Small K; Larsen P; Hoff RH; Hengge AC
    J Org Chem; 2002 Feb; 67(4):1214-20. PubMed ID: 11846665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of temperature on 31P NMR chemical shifts of phospholipids and their metabolites I. In chloroform-methanol-water.
    Estrada R; Stolowich N; Yappert MC
    Anal Biochem; 2008 Sep; 380(1):41-50. PubMed ID: 18534182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isotope effects and medium effects on sulfuryl transfer reactions.
    Hoff RH; Larsen P; Hengge AC
    J Am Chem Soc; 2001 Sep; 123(38):9338-44. PubMed ID: 11562216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR studies of coupled low- and high-barrier hydrogen bonds in pyridoxal-5'-phosphate model systems in polar solution.
    Sharif S; Denisov GS; Toney MD; Limbach HH
    J Am Chem Soc; 2007 May; 129(19):6313-27. PubMed ID: 17455937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparisons of phosphorothioate with phosphate transfer reactions for a monoester, diester, and triester: isotope effect studies.
    Catrina IE; Hengge AC
    J Am Chem Soc; 2003 Jun; 125(25):7546-52. PubMed ID: 12812494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transesterification thio effects of phosphate diesters: free energy barriers and kinetic and equilibrium isotope effects from density-functional theory.
    Liu Y; Gregersen BA; Hengge A; York DM
    Biochemistry; 2006 Aug; 45(33):10043-53. PubMed ID: 16906762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational study of the influence of solvent on (16)O/(18)O equilibrium isotope effects in phosphate deprotonation reactions.
    Kolmodin K; Luzhkov VB; Aqvist J
    J Am Chem Soc; 2002 Aug; 124(34):10130-5. PubMed ID: 12188677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The thermodynamics of phosphate versus phosphorothioate ester hydrolysis.
    Purcell J; Hengge AC
    J Org Chem; 2005 Oct; 70(21):8437-42. PubMed ID: 16209589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An altered mechanism of hydrolysis for a metal-complexed phosphate diester.
    Humphry T; Forconi M; Williams NH; Hengge AC
    J Am Chem Soc; 2002 Dec; 124(50):14860-1. PubMed ID: 12475323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile oxygen exchanges of phosphoenolpyruvate and preparation of [18O]phosphoenolpyruvate.
    O'Neal CC; Bild GS; Smith LT
    Biochemistry; 1983 Feb; 22(3):611-7. PubMed ID: 6838816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental effects on phosphoryl group bonding probed by vibrational spectroscopy: implications for understanding phosphoryl transfer and enzymatic catalysis.
    Cheng H; Nikolic-Hughes I; Wang JH; Deng H; O'Brien PJ; Wu L; Zhang ZY; Herschlag D; Callender R
    J Am Chem Soc; 2002 Sep; 124(38):11295-306. PubMed ID: 12236744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of solvent nucleophile isotope effects: evidence for concerted mechanisms and nucleophilic activation by metal coordination in nonenzymatic and ribozyme-catalyzed phosphodiester hydrolysis.
    Cassano AG; Anderson VE; Harris ME
    Biochemistry; 2004 Aug; 43(32):10547-59. PubMed ID: 15301552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered mechanisms of reactions of phosphate esters bridging a dinuclear metal center.
    Humphry T; Forconi M; Williams NH; Hengge AC
    J Am Chem Soc; 2004 Sep; 126(38):11864-9. PubMed ID: 15382921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of Hydrogen Bond Structure in Water versus Aprotic Environments To Test the Relationship Between Length and Stability.
    Sigala PA; Ruben EA; Liu CW; Piccoli PM; Hohenstein EG; Martínez TJ; Schultz AJ; Herschlag D
    J Am Chem Soc; 2015 May; 137(17):5730-40. PubMed ID: 25871450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-catalyzed phosphodiester cleavage: secondary 18O isotope effects as an indicator of mechanism.
    Rawlings J; Cleland WW; Hengge AC
    J Am Chem Soc; 2006 Dec; 128(51):17120-5. PubMed ID: 17177465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen bonding in ortho-substituted arylamides: the influence of protic solvents.
    Liu Z; Remsing RC; Liu D; Moyna G; Pophristic V
    J Phys Chem B; 2009 May; 113(20):7041-4. PubMed ID: 19397255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.