BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 16209894)

  • 1. An optimisation algorithm for determination of treatment margins around moving and deformable targets.
    Redpath AT; Muren LP
    Radiother Oncol; 2005 Nov; 77(2):194-201. PubMed ID: 16209894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convolution method and CTV-to-PTV margins for finite fractions and small systematic errors.
    Gordon JJ; Siebers JV
    Phys Med Biol; 2007 Apr; 52(7):1967-90. PubMed ID: 17374922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CT-guided intensity-modulated radiotherapy for bladder cancer: isocentre shifts, margins and their impact on target dose.
    Redpath AT; Muren LP
    Radiother Oncol; 2006 Dec; 81(3):276-83. PubMed ID: 17113669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On probabilistically defined margins in radiation therapy.
    Papiez L; Langer M
    Phys Med Biol; 2006 Aug; 51(16):3921-39. PubMed ID: 16885615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A phase II trial for the optimisation of treatment position in the radiation therapy of prostate cancer.
    O'Neill L; Armstrong J; Buckney S; Assiri M; Cannon M; Holmberg O
    Radiother Oncol; 2008 Jul; 88(1):61-6. PubMed ID: 18453021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A concomitant tumour boost in bladder irradiation: patient suitability and the potential of intensity-modulated radiotherapy.
    Muren LP; Redpath AT; McLaren D; Rørvik J; Halvorsen OJ; Høstmark J; Bakke A; Thwaites D; Dahl O
    Radiother Oncol; 2006 Jul; 80(1):98-105. PubMed ID: 16876274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dose calculations accounting for breathing motion in stereotactic lung radiotherapy based on 4D-CT and the internal target volume.
    Admiraal MA; Schuring D; Hurkmans CW
    Radiother Oncol; 2008 Jan; 86(1):55-60. PubMed ID: 18082905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A prospective three-dimensional analysis about the impact of differences in the clinical target volume in prostate cancer irradiation on normal-tissue exposure. A potential for increasing the benefit/risk ratio.
    Hille A; Töws N; Schmidberger H; Hess CF
    Strahlenther Onkol; 2005 Dec; 181(12):789-95. PubMed ID: 16362789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A motion phantom study on helical tomotherapy: the dosimetric impacts of delivery technique and motion.
    Kanagaki B; Read PW; Molloy JA; Larner JM; Sheng K
    Phys Med Biol; 2007 Jan; 52(1):243-55. PubMed ID: 17183139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling the variation in rectal dose due to inter-fraction rectal wall deformation in external beam prostate treatments.
    Booth J; Zavgorodni S
    Phys Med Biol; 2005 Nov; 50(21):5055-74. PubMed ID: 16237241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intra-fractional bladder motion and margins in adaptive radiotherapy for urinary bladder cancer.
    Grønborg C; Vestergaard A; Høyer M; Söhn M; Pedersen EM; Petersen JB; Agerbæk M; Muren LP
    Acta Oncol; 2015; 54(9):1461-6. PubMed ID: 26313410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of interfractional set-up errors and intrafractional organ motions during IMRT for head and neck tumors to define an appropriate planning target volume (PTV)- and planning organs at risk volume (PRV)-margins.
    Suzuki M; Nishimura Y; Nakamatsu K; Okumura M; Hashiba H; Koike R; Kanamori S; Shibata T
    Radiother Oncol; 2006 Mar; 78(3):283-90. PubMed ID: 16564594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persistently better treatment planning results of intensity-modulated (IMRT) over conformal radiotherapy (3D-CRT) in prostate cancer patients with significant variation of clinical target volume and/or organs-at-risk.
    Fenoglietto P; Laliberte B; Allaw A; Ailleres N; Idri K; Hay MH; Moscardo CL; Gourgou S; Dubois JB; Azria D
    Radiother Oncol; 2008 Jul; 88(1):77-87. PubMed ID: 18215434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of margins, integral dose and interfraction target coverage with image-guided radiotherapy compared with non-image-guided radiotherapy for bladder cancer.
    Foroudi F; Pham D; Bressel M; Hardcastle N; Gill S; Kron T
    Clin Oncol (R Coll Radiol); 2014 Aug; 26(8):497-505. PubMed ID: 24726459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Limitations of the planning organ at risk volume (PRV) concept.
    Stroom JC; Heijmen BJ
    Int J Radiat Oncol Biol Phys; 2006 Sep; 66(1):279-86. PubMed ID: 16904527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilize target motion to cover clinical target volume (ctv)--a novel and practical treatment planning approach to manage respiratory motion.
    Jin JY; Ajlouni M; Kong FM; Ryu S; Chetty IJ; Movsas B
    Radiother Oncol; 2008 Dec; 89(3):292-303. PubMed ID: 18701181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment planning for MRI assisted brachytherapy of gynecologic malignancies based on total dose constraints.
    Lang S; Kirisits C; Dimopoulos J; Georg D; Pötter R
    Int J Radiat Oncol Biol Phys; 2007 Oct; 69(2):619-27. PubMed ID: 17869676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the dosimetric impact of non-exclusion of the rectum from the boost PTV in IMRT treatment plans for prostate cancer patients.
    Kassim I; Dirkx ML; Heijmen BJ
    Radiother Oncol; 2009 Jul; 92(1):62-7. PubMed ID: 19278745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The contribution of on-line correction for rotational organ motion in image-guided radiotherapy of the bladder and prostate.
    Redpath AT; Wright P; Muren LP
    Acta Oncol; 2008; 47(7):1367-72. PubMed ID: 18661436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Four-dimensional IMRT treatment planning using a DMLC motion-tracking algorithm.
    Suh Y; Sawant A; Venkat R; Keall PJ
    Phys Med Biol; 2009 Jun; 54(12):3821-35. PubMed ID: 19478383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.