These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 16210180)

  • 1. Variations in the morphology of wood structure can explain why hardwood species of similar density have very different resistances to impact and compressive loading.
    Hepworth DG; Vincent JF; Stringer G; Jeronimidis G
    Philos Trans A Math Phys Eng Sci; 2002 Feb; 360(1791):255-72. PubMed ID: 16210180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variation of cellulose microfibril angles in softwoods and hardwoods-a possible strategy of mechanical optimization.
    Lichtenegger H; Reiterer A; Stanzl-Tschegg SE; Fratzl P
    J Struct Biol; 1999 Dec; 128(3):257-69. PubMed ID: 10633065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-infrared spectroscopic study of the physical and mechanical properties of wood with meso- and micro-scale anatomical observation.
    Tsuchikawa S; Hirashima Y; Sasaki Y; Ando K
    Appl Spectrosc; 2005 Jan; 59(1):86-93. PubMed ID: 15720742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling polymer interactions of the 'molecular Velcro' type in wood under mechanical stress.
    Altaner CM; Jarvis MC
    J Theor Biol; 2008 Aug; 253(3):434-45. PubMed ID: 18485371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-infrared spectroscopic investigation of the hydrothermal degradation mechanism of wood as an analogue of archaeological wood. Part II: hardwood.
    Inagaki T; Mitsui K; Tsuchikawa S
    Appl Spectrosc; 2009 Jul; 63(7):753-8. PubMed ID: 19589212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inflammatory response and genotoxicity of seven wood dusts in the human epithelial cell line A549.
    Bornholdt J; Saber AT; Sharma AK; Savolainen K; Vogel U; Wallin H
    Mutat Res; 2007 Aug; 632(1-2):78-88. PubMed ID: 17590384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulose microfibril angle in the cell wall of wood fibres.
    Barnett JR; Bonham VA
    Biol Rev Camb Philos Soc; 2004 May; 79(2):461-72. PubMed ID: 15191232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moisture changes in the plant cell wall force cellulose crystallites to deform.
    Zabler S; Paris O; Burgert I; Fratzl P
    J Struct Biol; 2010 Aug; 171(2):133-41. PubMed ID: 20438848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Utilization of compressed Chinese fir thinning wood].
    Chen R; Wei P; Liu J
    Ying Yong Sheng Tai Xue Bao; 2005 Dec; 16(12):2306-10. PubMed ID: 16515177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part II: hardwood.
    Tsuchikawa S; Siesler HW
    Appl Spectrosc; 2003 Jun; 57(6):675-81. PubMed ID: 14658701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure-stiffness relationships of ten European and tropical hardwood species.
    de Borst K; Bader TK; Wikete C
    J Struct Biol; 2012 Feb; 177(2):532-42. PubMed ID: 22079401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties of cellulose fibres and wood. Orientational aspects in situ investigated with synchrotron radiation.
    Kölln K; Grotkopp I; Burghammer M; Roth SV; Funari SS; Dommach M; Müller M
    J Synchrotron Radiat; 2005 Nov; 12(Pt 6):739-44. PubMed ID: 16239742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-wall recovery after irreversible deformation of wood.
    Keckes J; Burgert I; Frühmann K; Müller M; Kölln K; Hamilton M; Burghammer M; Roth SV; Stanzl-Tschegg S; Fratzl P
    Nat Mater; 2003 Dec; 2(12):810-4. PubMed ID: 14625541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of hardwood and softwood dust-induced expression of cytokines and chemokines in mouse macrophage RAW 264.7 cells.
    Määttä J; Luukkonen R; Husgafvel-Pursiainen K; Alenius H; Savolainen K
    Toxicology; 2006 Jan; 218(1):13-21. PubMed ID: 16202497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-infrared spectroscopic investigation of the hydrothermal degradation mechanism of wood as an analogue of archaeological objects. Part I: softwood.
    Inagaki T; Mitsui K; Tsuchikawa S
    Appl Spectrosc; 2008 Nov; 62(11):1209-15. PubMed ID: 19007461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical and mechanical properties of European Hophornbeam (Ostrya carpinifolia Scop.) wood.
    Korkut S; Guller B
    Bioresour Technol; 2008 Jul; 99(11):4780-5. PubMed ID: 17983744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flavonoid insertion into cell walls improves wood properties.
    Ermeydan MA; Cabane E; Masic A; Koetz J; Burgert I
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):5782-9. PubMed ID: 23027798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer-assisted scanning electron microscopy of wood pulp fibres: dimensions and spatial distributions in a polypropylene composite.
    Chinga-Carrasco G; Lenes M; Johnsen PO; Hult EL
    Micron; 2009 Oct; 40(7):761-8. PubMed ID: 19477135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructure of cellulose microfibrils in spruce wood.
    Fernandes AN; Thomas LH; Altaner CM; Callow P; Forsyth VT; Apperley DC; Kennedy CJ; Jarvis MC
    Proc Natl Acad Sci U S A; 2011 Nov; 108(47):E1195-203. PubMed ID: 22065760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties and decay resistance of wood-polymer composites prepared from fast growing species in Turkey.
    Yildiz UC; Yildiz S; Gezer ED
    Bioresour Technol; 2005 Jun; 96(9):1003-11. PubMed ID: 15668197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.