BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 16210184)

  • 1. A particulate basis for a lattice-gas model of amphiphilic fluids.
    Love PJ
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):345-55. PubMed ID: 16210184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional hydrodynamic lattice-gas simulations of ternary amphiphilic fluids under shear flow.
    Love PJ; Coveney PV
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):357-66. PubMed ID: 16214685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum computing classical physics.
    Meyer DA
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):395-405. PubMed ID: 16210187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A free-surface lattice Boltzmann method for modelling the filling of expanding cavities by Bingham fluids.
    Ginzburg I; Steiner K
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):453-66. PubMed ID: 16210190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiscale lattice Boltzmann schemes for low Mach number flows.
    Filippova O; Schwade B; Hänel D
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):467-76. PubMed ID: 16214688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple-relaxation-time lattice Boltzmann models in three dimensions.
    D'Humières D; Ginzburg I; Krafczyk M; Lallemand P; Luo LS
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):437-51. PubMed ID: 16214687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lattice Boltzmann simulations of contact line motion in a liquid-gas system.
    Briant AJ; Papatzacos P; Yeomans JM
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):485-95. PubMed ID: 16214689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards the simplest hydrodynamic lattice-gas model.
    Boghosian BM; Love PJ; Meyer DA
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):333-44. PubMed ID: 16214684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lattice Boltzmann simulation of the flow of binary immiscible fluids with different viscosities using the Shan-Chen microscopic interaction model.
    Chin J; Boek ES; Coveney PV
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):547-58. PubMed ID: 16214694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamics of granular gases of viscoelastic particles.
    Brilliantov NV; Pöschel T
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):415-28. PubMed ID: 16214686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lattice Boltzmann equation for relativistic quantum mechanics.
    Succi S
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):429-36. PubMed ID: 16210189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the flow field and pressure drop in fixed-bed reactors with the help of lattice Boltzmann simulations.
    Zeiser T; Steven M; Freund H; Lammers P; Brenner G; Durst F; Bernsdorf J
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):507-20. PubMed ID: 16214691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lattice Boltzmann simulations of binary fluid flow through porous media.
    Tölke J; Krafczyk M; Schulz M; Rank E
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):535-45. PubMed ID: 16214693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unification of hierarchical reference theory and self-consistent Ornstein-Zernike approximation: analysis of the critical region for fluids and lattice gases.
    Høye JS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021114. PubMed ID: 19391713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A lattice kinetic scheme for incompressible viscous flows with heat transfer.
    Inamuro T
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):477-84. PubMed ID: 16210191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gas-surface interactions using accommodation coefficients for a dilute and a dense gas in a micro- or nanochannel: heat flux predictions using combined molecular dynamics and Monte Carlo techniques.
    Nedea SV; van Steenhoven AA; Markvoort AJ; Spijker P; Giordano D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053012. PubMed ID: 25353885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Foam formation and mitigation in a three-phase gas-liquid-particulate system.
    Vijayaraghavan K; Nikolov A; Wasan D
    Adv Colloid Interface Sci; 2006 Nov; 123-126():49-61. PubMed ID: 16997269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced dispersion in cylindrical packed beds.
    Maier RS; Kroll DM; Bernard RS; Howington SE; Peters JF; Davis HT
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):497-506. PubMed ID: 16214690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coarse-grained modelling of surface nanobubbles.
    Grosfils P
    J Phys Condens Matter; 2013 May; 25(18):184006. PubMed ID: 23598798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Boltzmann equation approach to the shear flow of a granular material.
    Cercignani C
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):407-14. PubMed ID: 16210188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.