These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 16210199)

  • 1. Cervical vertebral motions and biomechanical responses to direct loading of human head.
    Ono K; Kaneoka K; Hattori S; Ujihashi S; Takhounts EG; Haffner MP; Eppinger RH
    Traffic Inj Prev; 2003 Jun; 4(2):141-52. PubMed ID: 16210199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anthropometric specifications, development, and evaluation of EvaRID--a 50th percentile female rear impact finite element dummy model.
    Carlsson A; Chang F; Lemmen P; Kullgren A; Schmitt KU; Linder A; Svensson MY
    Traffic Inj Prev; 2014; 15(8):855-65. PubMed ID: 24484526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding whiplash injury and prevention mechanisms using a human model of the neck.
    Ivancic PC; Xiao M
    Accid Anal Prev; 2011 Jul; 43(4):1392-9. PubMed ID: 21545871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of cervical vertebrae rotations for PMHS and BioRID II in rear impacts.
    Kang YS; Moorhouse K; Herriott R; Bolte JH
    Traffic Inj Prev; 2013; 14 Suppl():S136-47. PubMed ID: 23905990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Hybrid III upper and lower neck response in compressive loading scenarios with known human injury outcomes.
    Toomey DE; Yang KH; Van Ee CA
    Traffic Inj Prev; 2014; 15 Suppl 1():S223-30. PubMed ID: 25307391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Average male and female virtual dummy model (BioRID and EvaRID) simulations with two seat concepts in the Euro NCAP low severity rear impact test configuration.
    Linder A; Holmqvist K; Svensson MY
    Accid Anal Prev; 2018 May; 114():62-70. PubMed ID: 28622848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neck injury mechanisms during direct face impact.
    Fukushima M; Kaneoka K; Ono K; Sakane M; Ujihashi S; Ochiai N
    Spine (Phila Pa 1976); 2006 Apr; 31(8):903-8. PubMed ID: 16622379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The repeatability and reproducibility of the BioRID IIg in a repeatable laboratory seat based on a production car seat.
    Hynd D; Depinet P; Lorenz B
    Traffic Inj Prev; 2013; 14 Suppl():S95-104. PubMed ID: 23905679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development, calibration, and validation of a head-neck complex of THOR mod kit finite element model.
    Putnam JB; Somers JT; Untaroiu CD
    Traffic Inj Prev; 2014; 15(8):844-54. PubMed ID: 24433158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of age and injury mechanism on cervical spine injury tolerance from head contact loading.
    Yoganandan N; Chirvi S; Voo L; Pintar FA; Banerjee A
    Traffic Inj Prev; 2018 Feb; 19(2):165-172. PubMed ID: 28738168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neck muscle load distribution in lateral, frontal, and rear-end impacts: a three-dimensional finite element analysis.
    Hedenstierna S; Halldin P; Siegmund GP
    Spine (Phila Pa 1976); 2009 Nov; 34(24):2626-33. PubMed ID: 19910765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of seat characteristics on occupant motion in low-speed rear impacts.
    Watanabe Y; Ichikawa H; Kayama O; Ono K; Kaneoka K; Inami S
    Accid Anal Prev; 2000 Mar; 32(2):243-50. PubMed ID: 10688480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of the head-neck complex in low-speed rear impact.
    Stemper BD; Yoganandan N; Pintar FA
    Biomed Sci Instrum; 2003; 39():245-50. PubMed ID: 12724902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromyographic and kinematic exploration of whiplash-type left anterolateral impacts.
    Kumar S; Ferrari R; Narayan Y
    J Spinal Disord Tech; 2004 Oct; 17(5):412-22. PubMed ID: 15385882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neck injury response to direct head impact.
    Ivancic PC
    Accid Anal Prev; 2013 Jan; 50():323-9. PubMed ID: 22613632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cervical spine segmental vertebral motion in healthy volunteers feigning restriction of neck flexion and extension.
    Puglisi F; Strimpakos N; Papathanasiou M; Kapreli E; Bonelli A; Sgambetterra S; Ferrari R
    Int J Legal Med; 2007 Sep; 121(5):337-40. PubMed ID: 16847699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BioRID dummy responses in matched ABTS and conventional seat tests on the IIHS rear sled.
    Viano DC; Parenteau CS
    Traffic Inj Prev; 2011 Aug; 12(4):339-46. PubMed ID: 21823942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the internal and external biofidelity of current rear impact ATDs to response targets developed from moderate-speed rear impacts of PMHS.
    Moorhouse K; Donnelly B; Kang YS; Bolte JH; Herriott R
    Stapp Car Crash J; 2012 Oct; 56():171-229. PubMed ID: 23625562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of muscle activations for biofidelic pediatric neck response in computational models.
    Dibb AT; Cox CA; Nightingale RW; Luck JF; Cutcliffe HC; Myers BS; Arbogast KB; Seacrist T; Bass CR
    Traffic Inj Prev; 2013; 14 Suppl():S116-27. PubMed ID: 23905513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of biomechanical head-neck responses of hybrid III dummy and whole body cadaver during inverted drops.
    Sances A; Kumaresan S
    Biomed Sci Instrum; 2001; 37():423-7. PubMed ID: 11347428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.