These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 16210395)

  • 1. Evaluation of drug penetration into the brain: a double study by in vivo imaging with positron emission tomography and using an in vitro model of the human blood-brain barrier.
    Josserand V; Pélerin H; de Bruin B; Jego B; Kuhnast B; Hinnen F; Ducongé F; Boisgard R; Beuvon F; Chassoux F; Daumas-Duport C; Ezan E; Dollé F; Mabondzo A; Tavitian B
    J Pharmacol Exp Ther; 2006 Jan; 316(1):79-86. PubMed ID: 16210395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of in vitro cell-based human blood-brain barrier model using clinical positron emission tomography radioligands to predict in vivo human brain penetration.
    Mabondzo A; Bottlaender M; Guyot AC; Tsaouin K; Deverre JR; Balimane PV
    Mol Pharm; 2010 Oct; 7(5):1805-15. PubMed ID: 20795735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and nicotinic acetylcholine receptor in vivo binding properties of 2-fluoro-3-[2(S)-2-azetidinylmethoxy]pyridine: a new positron emission tomography ligand for nicotinic receptors.
    Doll F; Dolci L; Valette H; Hinnen F; Vaufrey F; Guenther I; Fuseau C; Coulon C; Bottlaender M; Crouzel C
    J Med Chem; 1999 Jun; 42(12):2251-9. PubMed ID: 10377231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Novel Analogs of the Monocarboxylate Transporter Ligand FACH and Biological Validation of One Potential Radiotracer for Positron Emission Tomography (PET) Imaging.
    Sadeghzadeh M; Wenzel B; Gündel D; Deuther-Conrad W; Toussaint M; Moldovan RP; Fischer S; Ludwig FA; Teodoro R; Jonnalagadda S; Jonnalagadda SK; Schüürmann G; Mereddy VR; Drewes LR; Brust P
    Molecules; 2020 May; 25(10):. PubMed ID: 32423056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A co-culture-based model of human blood-brain barrier: application to active transport of indinavir and in vivo-in vitro correlation.
    Megard I; Garrigues A; Orlowski S; Jorajuria S; Clayette P; Ezan E; Mabondzo A
    Brain Res; 2002 Feb; 927(2):153-67. PubMed ID: 11821009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 5-substituted derivatives of 6-halogeno-3-((2-(S)-azetidinyl)methoxy)pyridine and 6-halogeno-3-((2-(S)-pyrrolidinyl)methoxy)pyridine with low picomolar affinity for alpha4beta2 nicotinic acetylcholine receptor and wide range of lipophilicity: potential probes for imaging with positron emission tomography.
    Zhang Y; Pavlova OA; Chefer SI; Hall AW; Kurian V; Brown LL; Kimes AS; Mukhin AG; Horti AG
    J Med Chem; 2004 May; 47(10):2453-65. PubMed ID: 15115389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Human Immortalized Cell-Based Blood-Brain Barrier Triculture Model: Development and Characterization as a Promising Tool for Drug-Brain Permeability Studies.
    Ito R; Umehara K; Suzuki S; Kitamura K; Nunoya KI; Yamaura Y; Imawaka H; Izumi S; Wakayama N; Komori T; Anzai N; Akita H; Furihata T
    Mol Pharm; 2019 Nov; 16(11):4461-4471. PubMed ID: 31573814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between permeability status of the blood-brain barrier and in vitro permeability coefficient of a drug.
    Gaillard PJ; de Boer AG
    Eur J Pharm Sci; 2000 Dec; 12(2):95-102. PubMed ID: 11102736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mimicking brain tissue binding in an in vitro model of the blood-brain barrier illustrates differences between in vitro and in vivo methods for assessing the rate of brain penetration.
    Heymans M; Sevin E; Gosselet F; Lundquist S; Culot M
    Eur J Pharm Biopharm; 2018 Jun; 127():453-461. PubMed ID: 29602020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porcine brain microvessel endothelial cells as an in vitro model to predict in vivo blood-brain barrier permeability.
    Zhang Y; Li CS; Ye Y; Johnson K; Poe J; Johnson S; Bobrowski W; Garrido R; Madhu C
    Drug Metab Dispos; 2006 Nov; 34(11):1935-43. PubMed ID: 16896068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo imaging of human cerebral nicotinic acetylcholine receptors with 2-18F-fluoro-A-85380 and PET.
    Gallezot JD; Bottlaender M; Grégoire MC; Roumenov D; Deverre JR; Coulon C; Ottaviani M; Dollé F; Syrota A; Valette H
    J Nucl Med; 2005 Feb; 46(2):240-7. PubMed ID: 15695782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of brain capillary endothelial cell-based and epithelial (MDCK-MDR1, Caco-2, and VB-Caco-2) cell-based surrogate blood-brain barrier penetration models.
    Hellinger E; Veszelka S; Tóth AE; Walter F; Kittel A; Bakk ML; Tihanyi K; Háda V; Nakagawa S; Duy TD; Niwa M; Deli MA; Vastag M
    Eur J Pharm Biopharm; 2012 Oct; 82(2):340-51. PubMed ID: 22906709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of drug transport through the blood-brain barrier in vivo: a comparison between two in vitro cell models.
    Lundquist S; Renftel M; Brillault J; Fenart L; Cecchelli R; Dehouck MP
    Pharm Res; 2002 Jul; 19(7):976-81. PubMed ID: 12180550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemically synthesized peptide libraries as a new source of BBB shuttles. Use of mass spectrometry for peptide identification.
    Guixer B; Arroyo X; Belda I; Sabidó E; Teixidó M; Giralt E
    J Pept Sci; 2016 Sep; 22(9):577-91. PubMed ID: 27440580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro and in vivo evaluation of [18F]-FDEGPECO as a PET tracer for imaging the metabotropic glutamate receptor subtype 5 (mGluR5).
    Wanger-Baumann CA; Mu L; Honer M; Belli S; Alf MF; Schubiger PA; Krämer SD; Ametamey SM
    Neuroimage; 2011 Jun; 56(3):984-91. PubMed ID: 21406237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NIDA522131, a new radioligand for imaging extrathalamic nicotinic acetylcholine receptors: in vitro and in vivo evaluation.
    Chefer SI; Pavlova OA; Zhang Y; Vaupel DB; Kimes AS; Horti AG; Stein E; Mukhin AG
    J Neurochem; 2008 Jan; 104(2):306-15. PubMed ID: 17986233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro models of the blood-brain barrier for the study of drug delivery to the brain.
    Wilhelm I; Krizbai IA
    Mol Pharm; 2014 Jul; 11(7):1949-63. PubMed ID: 24641309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a humanized in vitro blood-brain barrier model to screen for brain penetration of antiepileptic drugs.
    Cucullo L; Hossain M; Rapp E; Manders T; Marchi N; Janigro D
    Epilepsia; 2007 Mar; 48(3):505-16. PubMed ID: 17326793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods to assess drug permeability across the blood-brain barrier.
    Nicolazzo JA; Charman SA; Charman WN
    J Pharm Pharmacol; 2006 Mar; 58(3):281-93. PubMed ID: 16536894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro models for the blood-brain barrier.
    Garberg P; Ball M; Borg N; Cecchelli R; Fenart L; Hurst RD; Lindmark T; Mabondzo A; Nilsson JE; Raub TJ; Stanimirovic D; Terasaki T; Oberg JO; Osterberg T
    Toxicol In Vitro; 2005 Apr; 19(3):299-334. PubMed ID: 15713540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.