These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 16210790)

  • 1. Estimation of yields of OH radicals in water irradiated by ionizing radiation.
    Yamaguchi H; Uchihori Y; Yasuda N; Takada M; Kitamura H
    J Radiat Res; 2005 Sep; 46(3):333-41. PubMed ID: 16210790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of yields of hydroxyl radicals in water under various energy heavy ions.
    Taguchi M; Kimura A; Watanabe R; Hirota K
    Radiat Res; 2009 Feb; 171(2):254-63. PubMed ID: 19267552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the spur lifetime and its temperature dependence in the low linear energy transfer radiolysis of water.
    Sanguanmith S; Meesungnoen J; Muroya Y; Lin M; Katsumura Y; Jay-Gerin JP
    Phys Chem Chem Phys; 2012 Dec; 14(48):16731-6. PubMed ID: 23138332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yield of OH radicals in water under high-density energy deposition by heavy-ion irradiation.
    Taguchi M; Kojima T
    Radiat Res; 2005 Apr; 163(4):455-61. PubMed ID: 15799702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation and investigation of reactive species yields of Geant4-DNA chemistry models.
    Peukert D; Incerti S; Kempson I; Douglass M; Karamitros M; Baldacchino G; Bezak E
    Med Phys; 2019 Feb; 46(2):983-998. PubMed ID: 30536689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical Dosimetry in the "Water Window": Ferric Ions and Hydroxyl Radicals Produced by Intense Soft X Rays.
    Vyšín L; Wachulak P; Toufarová M; Medvedev N; Voronkov RA; Bartnik A; Fiedorowicz H; Juha L
    Radiat Res; 2020 Apr; 193(4):372-382. PubMed ID: 32097100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical consideration of the chemical pathways for radiation-induced strand breaks.
    Chatterjee A; Koehl P; Magee JL
    Adv Space Res; 1986; 6(11):97-105. PubMed ID: 11537252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo simulation of water radiolysis for low-energy charged particles.
    Uehara S; Nikjoo H
    J Radiat Res; 2006 Mar; 47(1):69-81. PubMed ID: 16571920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Computer Modeling Study of Water Radiolysis at High Dose Rates. Relevance to FLASH Radiotherapy.
    Alanazi A; Meesungnoen J; Jay-Gerin JP
    Radiat Res; 2021 Feb; 195(2):149-162. PubMed ID: 33300999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiation chemistry of high-energy carbon, neon, and argon ions: hydrated electron yields.
    Appleby A; Christman EA; Jayko M
    Radiat Res; 1986 Jun; 106(3):300-6. PubMed ID: 3714976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ESR investigation of sucrose radicals produced by particle irradiation.
    Nakagawa K; Sato Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 May; 60(6):1315-8. PubMed ID: 15134729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymerization Reactions and Modifications of Polymers by Ionizing Radiation.
    Ashfaq A; Clochard MC; Coqueret X; Dispenza C; Driscoll MS; Ulański P; Al-Sheikhly M
    Polymers (Basel); 2020 Nov; 12(12):. PubMed ID: 33266261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-LET radiolysis of liquid water with 1H+, 4He2+, 12C6+, and 20Ne9+ ions: effects of multiple ionization.
    Meesungnoen J; Jay-Gerin JP
    J Phys Chem A; 2005 Jul; 109(29):6406-19. PubMed ID: 16833985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron spin resonance study of DNA irradiated with an argon-ion beam: evidence for formation of sugar phosphate backbone radicals.
    Becker D; Bryant-Friedrich A; Trzasko C; Sevilla MD
    Radiat Res; 2003 Aug; 160(2):174-85. PubMed ID: 12859228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiation chemistry of high-energy carbon, neon, and argon ions: hydroxyl radical yields.
    Appleby A; Christman EA; Jayko M
    Radiat Res; 1985 Dec; 104(3):263-71. PubMed ID: 3001818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of DNA/chromatin organisation and scavenging capacity in USX- and proton- induced DNA damage.
    Alloni D; Ballarini F; Friedland W; Liotta M; Molinelli S; Ottolenghi A; Paretzke HG; Rossetti M
    Radiat Prot Dosimetry; 2006; 122(1-4):141-6. PubMed ID: 17284477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer-aided stochastic modeling of the radiolysis of liquid water.
    Michalik V; Begusová M; Bigildeev EA
    Radiat Res; 1998 Mar; 149(3):224-36. PubMed ID: 9496885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Target Oxygenation on the Chemical Track Evolution of Ion and Electron Radiation.
    Boscolo D; Krämer M; Fuss MC; Durante M; Scifoni E
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31936545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of temperature on the low-linear energy transfer radiolysis of the ceric-cerous sulfate dosimeter: a Monte Carlo simulation study.
    Kohan LM; Meesungnoen J; Sanguanmith S; Meesat R; Jay-Gerin JP
    Radiat Res; 2014 May; 181(5):495-502. PubMed ID: 24754561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the radiation chemistry of thymine in aqueous solution.
    Loman H; Blok J
    Radiat Res; 1968 Oct; 36(1):1-13. PubMed ID: 17387921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.