BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 1621098)

  • 1. An unlikely sugar substrate site in the 1.65 A structure of the human aldose reductase holoenzyme implicated in diabetic complications.
    Wilson DK; Bohren KM; Gabbay KH; Quiocho FA
    Science; 1992 Jul; 257(5066):81-4. PubMed ID: 1621098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel NADPH-binding domain revealed by the crystal structure of aldose reductase.
    Rondeau JM; TĂȘte-Favier F; Podjarny A; Reymann JM; Barth P; Biellmann JF; Moras D
    Nature; 1992 Jan; 355(6359):469-72. PubMed ID: 1734286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The crystal structure of the aldose reductase.NADPH binary complex.
    Borhani DW; Harter TM; Petrash JM
    J Biol Chem; 1992 Dec; 267(34):24841-7. PubMed ID: 1447221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of human aldehyde reductase: characterization of the active site pocket.
    Barski OA; Gabbay KH; Grimshaw CE; Bohren KM
    Biochemistry; 1995 Sep; 34(35):11264-75. PubMed ID: 7669785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of porcine aldehyde reductase holoenzyme.
    el-Kabbani O; Judge K; Ginell SL; Myles DA; DeLucas LJ; Flynn TG
    Nat Struct Biol; 1995 Aug; 2(8):687-92. PubMed ID: 7552731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refined 1.8 A structure of human aldose reductase complexed with the potent inhibitor zopolrestat.
    Wilson DK; Tarle I; Petrash JM; Quiocho FA
    Proc Natl Acad Sci U S A; 1993 Nov; 90(21):9847-51. PubMed ID: 8234324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An anion binding site in human aldose reductase: mechanistic implications for the binding of citrate, cacodylate, and glucose 6-phosphate.
    Harrison DH; Bohren KM; Ringe D; Petsko GA; Gabbay KH
    Biochemistry; 1994 Mar; 33(8):2011-20. PubMed ID: 8117658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics and molecular docking studies of an anti-diabetic complication inhibitor fucosterol from edible brown algae Eisenia bicyclis and Ecklonia stolonifera.
    Jung HA; Islam MN; Lee CM; Oh SH; Lee S; Jung JH; Choi JS
    Chem Biol Interact; 2013 Oct; 206(1):55-62. PubMed ID: 23994501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of the 2-oxoaldehyde methylglyoxal by aldose reductase and by glyoxalase-I: roles for glutathione in both enzymes and implications for diabetic complications.
    Vander Jagt DL; Hassebrook RK; Hunsaker LA; Brown WM; Royer RE
    Chem Biol Interact; 2001 Jan; 130-132(1-3):549-62. PubMed ID: 11306074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene regulation of aldose-, aldehyde- and a renal specific oxido reductase (RSOR) in the pathobiology of diabetes mellitus.
    Danesh FR; Wada J; Wallner EI; Sahai A; Srivastava SK; Kanwar YS
    Curr Med Chem; 2003 Aug; 10(15):1399-406. PubMed ID: 12871137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aldose reductase as a target for drug design: molecular modeling calculations on the binding of acyclic sugar substrates to the enzyme.
    De Winter HL; von Itzstein M
    Biochemistry; 1995 Jul; 34(26):8299-308. PubMed ID: 7599122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structure of Apo R268A human aldose reductase: hinges and latches that control the kinetic mechanism.
    Bohren KM; Brownlee JM; Milne AC; Gabbay KH; Harrison DH
    Biochim Biophys Acta; 2005 May; 1748(2):201-12. PubMed ID: 15769597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of human aldose reductase holoenzyme in complex with statil: an approach to structure-based inhibitor design of the enzyme.
    El-Kabbani O; Ramsland P; Darmanin C; Chung RP; Podjarny A
    Proteins; 2003 Feb; 50(2):230-8. PubMed ID: 12486717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 'specificity' pocket inferred from the crystal structures of the complexes of aldose reductase with the pharmaceutically important inhibitors tolrestat and sorbinil.
    Urzhumtsev A; TĂȘte-Favier F; Mitschler A; Barbanton J; Barth P; Urzhumtseva L; Biellmann JF; Podjarny A; Moras D
    Structure; 1997 May; 5(5):601-12. PubMed ID: 9195881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of yeast xylose reductase in complex with a novel NADP-DTT adduct provides insights into substrate recognition and catalysis.
    Paidimuddala B; Mohapatra SB; Gummadi SN; Manoj N
    FEBS J; 2018 Dec; 285(23):4445-4464. PubMed ID: 30269423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Residues affecting the catalysis and inhibition of rat lens aldose reductase.
    Carper DA; Hohman TC; Old SE
    Biochim Biophys Acta; 1995 Jan; 1246(1):67-73. PubMed ID: 7811733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on the inhibitor-binding site of porcine aldehyde reductase: crystal structure of the holoenzyme-inhibitor ternary complex.
    el-Kabbani O; Carper DA; McGowan MH; Devedjiev Y; Rees-Milton KJ; Flynn TG
    Proteins; 1997 Oct; 29(2):186-92. PubMed ID: 9329083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of CHO reductase, a member of the aldo-keto reductase superfamily.
    Ye Q; Hyndman D; Li X; Flynn TG; Jia Z
    Proteins; 2000 Jan; 38(1):41-8. PubMed ID: 10651037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1.7 A structure of FR-1, a fibroblast growth factor-induced member of the aldo-keto reductase family, complexed with coenzyme and inhibitor.
    Wilson DK; Nakano T; Petrash JM; Quiocho FA
    Biochemistry; 1995 Nov; 34(44):14323-30. PubMed ID: 7578036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal, and diabetic complications.
    Vander Jagt DL; Robinson B; Taylor KK; Hunsaker LA
    J Biol Chem; 1992 Mar; 267(7):4364-9. PubMed ID: 1537826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.