BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 16211328)

  • 1. Nutrient movement and mycelial reorganization in established systems of Phanerochaete velutina, following arrival of colonized wood resources.
    Harris MJ; Boddy L
    Microb Ecol; 2005 Aug; 50(2):141-51. PubMed ID: 16211328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reorganization of mycelial networks of Phanerochaete velutina in response to new woody resources and collembola (Folsomia candida) grazing.
    Wood J; Tordoff GM; Jones TH; Boddy L
    Mycol Res; 2006 Aug; 110(Pt 8):985-93. PubMed ID: 16891104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compensatory growth of Phanerochaete velutina mycelial systems grazed by Folsomia candida (Collembola).
    Bretherton S; Tordoff GM; Jones TH; Boddy L
    FEMS Microbiol Ecol; 2006 Oct; 58(1):33-40. PubMed ID: 16958906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporary phosphorus partitioning in mycelial systems of the cord-forming basidiomycete Phanerochaete velutina.
    Wells JM; Harris MJ; Boddy L
    New Phytol; 1998 Oct; 140(2):283-293. PubMed ID: 33862846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of temperature on wood decay and translocation of soil-derived phosphorus in mycelial cord systems.
    Wells JM; Boddy L
    New Phytol; 1995 Feb; 129(2):289-297. PubMed ID: 33874556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patch formation and developmental polarity in mycelial cord systems of Phanerochaete velutina on a nutrient-depleted soil.
    Wells JM; Donnelly DP; Boddy L
    New Phytol; 1997 Aug; 136(4):653-665. PubMed ID: 33863108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ecological memory and relocation decisions in fungal mycelial networks: responses to quantity and location of new resources.
    Fukasawa Y; Savoury M; Boddy L
    ISME J; 2020 Feb; 14(2):380-388. PubMed ID: 31628441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Foraging strategies of fungal mycelial networks: responses to quantity and distance of new resources.
    Fukasawa Y; Ishii K
    Front Cell Dev Biol; 2023; 11():1244673. PubMed ID: 37691819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rates and quantities of carbon flux to ectomycorrhizal mycelium following 14C pulse labeling of Pinus sylvestris seedlings: effects of litter patches and interaction with a wood-decomposer fungus.
    Leake JR; Donnelly DP; Saunders EM; Boddy L; Read DJ
    Tree Physiol; 2001 Feb; 21(2-3):71-82. PubMed ID: 11303651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resource relationships of foraging mycelial systems of Phanerochaete velutina and Hypholoma fasciculare in soil.
    Dowson CG; Springham P; Rayner ADM; Boddy L
    New Phytol; 1989 Mar; 111(3):501-509. PubMed ID: 33874011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of wood resource size and decomposition on hyphal outgrowth of a cord-forming basidiomycete, Phanerochaete velutina.
    Fukasawa Y; Kaga K
    Sci Rep; 2020 Dec; 10(1):21936. PubMed ID: 33318597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mycelial responses of Hypholoma fasciculare to collembola grazing: effect of inoculum age, nutrient status and resource quality.
    Harold S; Tordoff GM; Jones TH; Boddy L
    Mycol Res; 2005 Aug; 109(Pt 8):927-35. PubMed ID: 16175795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Encounter with New Resources Causes Polarized Growth of the Cord-Forming Basidiomycete Phanerochaete velutina on Soil.
    Wells JM; Harris MJ; Boddy L
    Microb Ecol; 1998 Nov; 36(3):372-382. PubMed ID: 9852516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grazing by Folsomia candida (Collembola) differentially affects mycelial morphology of the cord-forming basidiomycetes Hypholoma fasciculare, Phanerochaete velutina and Resinicium bicolor.
    Tordoff GM; Boddy L; Jones TH
    Mycol Res; 2006 Mar; 110(Pt 3):335-45. PubMed ID: 16487694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mycelial dynamics during interactions between Stropharia caerulea and other cord-forming, saprotrophic basidiomycetes.
    Donnelly DP; Boddy L
    New Phytol; 2001 Sep; 151(3):691-704. PubMed ID: 33853253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungal network responses to grazing.
    Boddy L; Wood J; Redman E; Hynes J; Fricker MD
    Fungal Genet Biol; 2010 Jun; 47(6):522-30. PubMed ID: 20144724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying dynamic resource allocation illuminates foraging strategy in Phanerochaete velutina.
    Tlalka M; Bebber DP; Darrah PR; Watkinson SC; Fricker MD
    Fungal Genet Biol; 2008 Jul; 45(7):1111-21. PubMed ID: 18467134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Timing of Resource Addition Affects the Migration Behavior of Wood Decomposer Fungal Mycelia.
    Fukasawa Y; Kaga K
    J Fungi (Basel); 2021 Aug; 7(8):. PubMed ID: 34436193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological growth pattern of Phanerochaete chrysosporium cultivated on different Miscanthus x giganteus biomass fractions.
    Khalil H; Legin E; Kurek B; Perre P; Taidi B
    BMC Microbiol; 2021 Nov; 21(1):318. PubMed ID: 34784888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mycelial growth and solid-state fermentation of lignocellulosic waste by white-rot fungus Phanerochaete chrysosporium under lead stress.
    Huang DL; Zeng GM; Feng CL; Hu S; Zhao MH; Lai C; Zhang Y; Jiang XY; Liu HL
    Chemosphere; 2010 Nov; 81(9):1091-7. PubMed ID: 20951406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.