BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 16211433)

  • 1. Rhizosphere competent Pseudomonas aeruginosa GRC1 produces characteristic siderophore and enhances growth of Indian mustard (Brassica campestris).
    Pandey P; Kang SC; Gupta CP; Maheshwari DK
    Curr Microbiol; 2005 Nov; 51(5):303-9. PubMed ID: 16211433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of metal ions on growth of Pseudomonas aeruginosa and siderophore and protein production.
    Gupta CP; Sharma A; Dubey RC; Maheshwari DK
    Indian J Exp Biol; 2001 Dec; 39(12):1318-21. PubMed ID: 12018534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Siderophore as a potential plant growth-promoting agent produced by Pseudomonas aeruginosa JAS-25.
    Sulochana MB; Jayachandra SY; Kumar SA; Parameshwar AB; Reddy KM; Dayanand A
    Appl Biochem Biotechnol; 2014 Sep; 174(1):297-308. PubMed ID: 25062779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudomonas aeruginosa (GRC1) as a strong antagonist of Macrophomina phaseolina and Fusarium oxysporum.
    Gupta CP; Sharma A; Dubey RC; Maheshwari DK
    Cytobios; 1999; 99(392):183-9. PubMed ID: 10581709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant disease suppression and growth promotion by a fluorescent Pseudomonas strain.
    Boruah HP; Kumar BS
    Folia Microbiol (Praha); 2002; 47(2):137-43. PubMed ID: 12058391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp.
    Ma Y; Rajkumar M; Freitas H
    Chemosphere; 2009 May; 75(6):719-25. PubMed ID: 19232424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria.
    Dey R; Pal KK; Bhatt DM; Chauhan SM
    Microbiol Res; 2004; 159(4):371-94. PubMed ID: 15646384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Cd, Pb, Zn, Cu-resistant endophytic Enterobacter sr CBSB1 and Rhodotorula sp. CBSB79 on the growth and phytoextraction of Brassica plants in multimetal contaminated soils.
    Wang W; Deng Z; Tan H; Cao L
    Int J Phytoremediation; 2013; 15(5):488-97. PubMed ID: 23488174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization.
    Sinha S; Mukherjee SK
    Curr Microbiol; 2008 Jan; 56(1):55-60. PubMed ID: 17899260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicological assessment of selective pesticides towards plant growth promoting activities of phosphate solubilizing Pseudomonas aeruginosa.
    Ahemad M; Khan MS
    Acta Microbiol Immunol Hung; 2011 Sep; 58(3):169-87. PubMed ID: 21983319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of plant-growth-promoting effects and concurrent promotion of heavy metal accumulation in the tissues of the plants grown in the polluted soil by Burkholderia strain LD-11.
    Huang GH; Tian HH; Liu HY; Fan XW; Liang Y; Li YZ
    Int J Phytoremediation; 2013; 15(10):991-1009. PubMed ID: 23819291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron-binding compounds from Agrobacterium spp.: biological control strain Agrobacterium rhizogenes K84 produces a hydroxamate siderophore.
    Penyalver R; Oger P; López MM; Farrand SK
    Appl Environ Microbiol; 2001 Feb; 67(2):654-64. PubMed ID: 11157228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and functional characterization of siderophore-producing lead- and cadmium-resistant Pseudomonas putida KNP9.
    Tripathi M; Munot HP; Shouche Y; Meyer JM; Goel R
    Curr Microbiol; 2005 May; 50(5):233-7. PubMed ID: 15886913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions.
    Sharma A; Johri BN
    Microbiol Res; 2003; 158(3):243-8. PubMed ID: 14521234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular organization of siderophore biosynthesis in Pseudomonas aeruginosa: Evidence for siderosomes.
    Gasser V; Guillon L; Cunrath O; Schalk IJ
    J Inorg Biochem; 2015 Jul; 148():27-34. PubMed ID: 25697961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of a dark septate endophytic fungus, Veronaeopsis simplex Y34, in Fusarium disease suppression in Chinese cabbage.
    Khastini RO; Ohta H; Narisawa K
    J Microbiol; 2012 Aug; 50(4):618-24. PubMed ID: 22923110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and engineering of plant growth promoting rhizobacteria Pseudomonas aeruginosa for enhanced cadmium bioremediation.
    Huang J; Liu Z; Li S; Xu B; Gong Y; Yang Y; Sun H
    J Gen Appl Microbiol; 2016 Nov; 62(5):258-265. PubMed ID: 27725404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Pseudomonas aeruginosa pirA gene encodes a second receptor for ferrienterobactin and synthetic catecholate analogues.
    Ghysels B; Ochsner U; Möllman U; Heinisch L; Vasil M; Cornelis P; Matthijs S
    FEMS Microbiol Lett; 2005 May; 246(2):167-74. PubMed ID: 15899402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Siderophore activity of pyoverdin for Pseudomonas aeruginosa.
    Cox CD; Adams P
    Infect Immun; 1985 Apr; 48(1):130-8. PubMed ID: 3156815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Pseudomonas aeruginosa RM-3 as a potential biocontrol agent.
    Minaxi ; Saxena J
    Mycopathologia; 2010 Sep; 170(3):181-93. PubMed ID: 20446042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.