These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 16211481)

  • 1. Interpreting dynamically-averaged scalar couplings in proteins.
    Lindorff-Larsen K; Best RB; Vendruscolo M
    J Biomol NMR; 2005 Aug; 32(4):273-80. PubMed ID: 16211481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural dynamics of protein backbone phi angles: extended molecular dynamics simulations versus experimental (3) J scalar couplings.
    Markwick PR; Showalter SA; Bouvignies G; Brüschweiler R; Blackledge M
    J Biomol NMR; 2009 Sep; 45(1-2):17-21. PubMed ID: 19629714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian estimation of Karplus parameters and torsion angles from three-bond scalar couplings constants.
    Habeck M; Rieping W; Nilges M
    J Magn Reson; 2005 Nov; 177(1):160-5. PubMed ID: 16085438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved validation of IDP ensembles by one-bond Cα-Hα scalar couplings.
    Gapsys V; Narayanan RL; Xiang S; de Groot BL; Zweckstetter M
    J Biomol NMR; 2015 Nov; 63(3):299-307. PubMed ID: 26433382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward an accurate determination of free energy landscapes in solution states of proteins.
    De Simone A; Richter B; Salvatella X; Vendruscolo M
    J Am Chem Soc; 2009 Mar; 131(11):3810-1. PubMed ID: 19292482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometry, energetics, and dynamics of hydrogen bonds in proteins: structural information derived from NMR scalar couplings.
    Gsponer J; Hopearuoho H; Cavalli A; Dobson CM; Vendruscolo M
    J Am Chem Soc; 2006 Nov; 128(47):15127-35. PubMed ID: 17117864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the mobility of methyl-bearing side chains in proteins from (3)J(CC) and (3)J(CN) couplings.
    Chou JJ; Case DA; Bax A
    J Am Chem Soc; 2003 Jul; 125(29):8959-66. PubMed ID: 12862493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous determination of one- and two-bond scalar and residual dipolar couplings between 13C', 13Calpha and 15N spins in proteins.
    Puttonen E; Tossavainen H; Permi P
    Magn Reson Chem; 2006 Jul; 44 Spec No():S168-76. PubMed ID: 16823899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-consistent Karplus parametrization of 3J couplings depending on the polypeptide side-chain torsion chi1.
    Pérez C; Löhr F; Rüterjans H; Schmidt JM
    J Am Chem Soc; 2001 Jul; 123(29):7081-93. PubMed ID: 11459487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How much backbone motion in ubiquitin is required to account for dipolar coupling data measured in multiple alignment media as assessed by independent cross-validation?
    Clore GM; Schwieters CD
    J Am Chem Soc; 2004 Mar; 126(9):2923-38. PubMed ID: 14995210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refinement of ensembles describing unstructured proteins using NMR residual dipolar couplings.
    Esteban-Martín S; Fenwick RB; Salvatella X
    J Am Chem Soc; 2010 Apr; 132(13):4626-32. PubMed ID: 20222664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the quality of protein conformation ensembles with relative populations.
    Vammi V; Lin TL; Song G
    J Biomol NMR; 2014 Mar; 58(3):209-25. PubMed ID: 24519023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relation between native ensembles and experimental structures of proteins.
    Best RB; Lindorff-Larsen K; DePristo MA; Vendruscolo M
    Proc Natl Acad Sci U S A; 2006 Jul; 103(29):10901-6. PubMed ID: 16829580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling protein conformational ensembles: from missing loops to equilibrium fluctuations.
    Shehu A; Clementi C; Kavraki LE
    Proteins; 2006 Oct; 65(1):164-79. PubMed ID: 16917941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric Karplus curves for the protein side-chain 3J couplings.
    Schmidt JM
    J Biomol NMR; 2007 Apr; 37(4):287-301. PubMed ID: 17333486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High accuracy of Karplus equations for relating three-bond J couplings to protein backbone torsion angles.
    Li F; Lee JH; Grishaev A; Ying J; Bax A
    Chemphyschem; 2015 Feb; 16(3):572-8. PubMed ID: 25511552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the calculation of ³Jαβ-coupling constants for side chains in proteins.
    Steiner D; Allison JR; Eichenberger AP; van Gunsteren WF
    J Biomol NMR; 2012 Jul; 53(3):223-46. PubMed ID: 22714630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using Pseudocontact Shifts and Residual Dipolar Couplings as Exact NMR Restraints for the Determination of Protein Structural Ensembles.
    Camilloni C; Vendruscolo M
    Biochemistry; 2015 Dec; 54(51):7470-6. PubMed ID: 26624789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exact solutions for chemical bond orientations from residual dipolar couplings.
    Wedemeyer WJ; Rohl CA; Scherag HA
    J Biomol NMR; 2002 Feb; 22(2):137-51. PubMed ID: 11883775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of main chain torsion angles in proteins: prediction of NMR coupling constants for native and random coil conformations.
    Smith LJ; Bolin KA; Schwalbe H; MacArthur MW; Thornton JM; Dobson CM
    J Mol Biol; 1996 Jan; 255(3):494-506. PubMed ID: 8568893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.