BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 16211636)

  • 1. Morphomolecular neuronal phenotypes in the neocortex reflect phylogenetic relationships among certain mammalian orders.
    Hof PR; Sherwood CC
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Nov; 287(1):1153-63. PubMed ID: 16211636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurochemical and cellular specializations in the mammalian neocortex reflect phylogenetic relationships: evidence from primates, cetaceans, and artiodactyls.
    Hof PR; Glezer II; Nimchinsky EA; Erwin JM
    Brain Behav Evol; 2000 Jun; 55(6):300-10. PubMed ID: 10971015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns.
    Hof PR; Glezer II; Condé F; Flagg RA; Rubin MB; Nimchinsky EA; Vogt Weisenhorn DM
    J Chem Neuroanat; 1999 Feb; 16(2):77-116. PubMed ID: 10223310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neocortical neuron types in Xenarthra and Afrotheria: implications for brain evolution in mammals.
    Sherwood CC; Stimpson CD; Butti C; Bonar CJ; Newton AL; Allman JM; Hof PR
    Brain Struct Funct; 2009 Feb; 213(3):301-28. PubMed ID: 19011898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel calretinin and reelin expressing neuronal population includes Cajal-Retzius-type cells in the neocortex of adult pigs.
    Abrahám H; Tóth Z; Bari F; Domoki F; Seress L
    Neuroscience; 2005; 136(1):217-30. PubMed ID: 16181738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemoarchitecture of the middle temporal visual area in the marmoset monkey (Callithrix jacchus): laminar distribution of calcium-binding proteins (calbindin, parvalbumin) and nonphosphorylated neurofilament.
    Bourne JA; Warner CE; Upton DJ; Rosa MG
    J Comp Neurol; 2007 Feb; 500(5):832-49. PubMed ID: 17177255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium-binding protein distribution in the retina of strepsirhine and haplorhine primates.
    Chiquet C; Dkhissi-Benyahya O; Cooper HM
    Brain Res Bull; 2005 Dec; 68(3):185-94. PubMed ID: 16325019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of calcium-binding proteins (Parvalbumin and Calbindin D-28K) and perineuronal nets in normal and scrapie-affected adult sheep brains.
    Vidal E; Bolea R; Tortosa R; Costa C; Domènech A; Monleón E; Vargas A; Badiola JJ; Pumarola M
    J Virol Methods; 2006 Sep; 136(1-2):137-46. PubMed ID: 16828173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of cochlear nucleus principal cells of Meriones unguiculatus and Monodelphis domestica by use of calcium-binding protein immunolabeling.
    Bazwinsky I; Härtig W; Rübsamen R
    J Chem Neuroanat; 2008 Jan; 35(1):158-74. PubMed ID: 18065198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The evolution of the structure of the neocortex in mammals: a new theory of cytoarchitecture].
    Marín Padilla M
    Rev Neurol; 2001 Nov 1-15; 33(9):843-53. PubMed ID: 11784988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The calcium binding proteins calbindin, parvalbumin, and calretinin have specific patterns of expression in the gray matter of cat spinal cord.
    Anelli R; Heckman CJ
    J Neurocytol; 2005 Dec; 34(6):369-85. PubMed ID: 16902759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The neocortex of cetaceans: cytoarchitecture and comparison with other aquatic and terrestrial species.
    Butti C; Raghanti MA; Sherwood CC; Hof PR
    Ann N Y Acad Sci; 2011 Apr; 1225():47-58. PubMed ID: 21534992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational models of neocortical neuronogenesis and programmed cell death in the developing mouse, monkey, and human.
    Gohlke JM; Griffith WC; Faustman EM
    Cereb Cortex; 2007 Oct; 17(10):2433-42. PubMed ID: 17204816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene expression profiling of primate neocortex: molecular neuroanatomy of cortical areas.
    Watakabe A; Komatsu Y; Nawa H; Yamamori T
    Genes Brain Behav; 2006; 5 Suppl 1():38-43. PubMed ID: 16417616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex.
    Toledo-Rodriguez M; Blumenfeld B; Wu C; Luo J; Attali B; Goodman P; Markram H
    Cereb Cortex; 2004 Dec; 14(12):1310-27. PubMed ID: 15192011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Species-specific ultrastructure of neuronal lipofuscin in hippocampus and neocortex of subhuman mammals and humans.
    Boellaard JW; Schlote W; Hofer W
    Ultrastruct Pathol; 2004; 28(5-6):341-51. PubMed ID: 15764582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The evolution of the neocortex in mammals: intrinsic and extrinsic contributions to the cortical phenotype.
    Karlen SJ; Krubitzer L
    Novartis Found Symp; 2006; 270():146-59; discussion 159-69. PubMed ID: 16649713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological and physiological properties of parvalbumin- and calretinin-containing gamma-aminobutyric acidergic neurons in the substantia nigra.
    Lee CR; Tepper JM
    J Comp Neurol; 2007 Feb; 500(5):958-72. PubMed ID: 17177263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative molecular neuroanatomy of mammalian neocortex: what can gene expression tell us about areas and layers?
    Watakabe A
    Dev Growth Differ; 2009 Apr; 51(3):343-54. PubMed ID: 19222526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parvalbumin in the cat claustrum: ultrastructure, distribution and functional implications.
    Hinova-Palova DV; Edelstein LR; Paloff AM; Hristov S; Papantchev VG; Ovtscharoff WA
    Acta Histochem; 2007; 109(1):61-77. PubMed ID: 17126385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.