BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 16211636)

  • 21. Selective gene expression in regions of primate neocortex: implications for cortical specialization.
    Yamamori T
    Prog Neurobiol; 2011 Aug; 94(3):201-22. PubMed ID: 21621585
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Order-specific quantitative patterns of cortical gyrification.
    Pillay P; Manger PR
    Eur J Neurosci; 2007 May; 25(9):2705-12. PubMed ID: 17459107
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Co-occurrence of calcium-binding proteins and calcium-permeable glutamate receptors in the primary gustatory nucleus of goldfish.
    Ikenaga T; Huesa G; Finger TE
    J Comp Neurol; 2006 Nov; 499(1):90-105. PubMed ID: 16958099
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The evolution of the neocortex in mammals: how is phenotypic diversity generated?
    Krubitzer L; Kaas J
    Curr Opin Neurobiol; 2005 Aug; 15(4):444-53. PubMed ID: 16026978
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prenatal acoustic stimulation influences neuronal size and the expression of calcium-binding proteins (calbindin D-28K and parvalbumin) in chick hippocampus.
    Chaudhury S; Nag TC; Wadhwa S
    J Chem Neuroanat; 2006 Dec; 32(2-4):117-26. PubMed ID: 16962286
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Colocalization of neuropeptides with calcium-binding proteins in the claustral interneurons during postnatal development of the rat.
    Kowiański P; Dziewiatkowski J; Moryś JM; Majak K; Wójcik S; Edelstein LR; Lietzau G; Moryś J
    Brain Res Bull; 2009 Sep; 80(3):100-6. PubMed ID: 19576270
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Structure of the cerebral cortex. Intrinsic organization and comparative analysis of the neocortex].
    Valverde F
    Rev Neurol; 2002 Apr 16-30; 34(8):758-80. PubMed ID: 12080498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Layer-specific markers as probes for neuron type identity in human neocortex and malformations of cortical development.
    Hevner RF
    J Neuropathol Exp Neurol; 2007 Feb; 66(2):101-9. PubMed ID: 17278994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calcium-binding proteins label functional streams of the visual system in a songbird.
    Heyers D; Manns M; Luksch H; Güntürkün O; Mouritsen H
    Brain Res Bull; 2008 Mar; 75(2-4):348-55. PubMed ID: 18331897
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae).
    Hof PR; Van der Gucht E
    Anat Rec (Hoboken); 2007 Jan; 290(1):1-31. PubMed ID: 17441195
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calcium-binding proteins in the cerebellar cortex of the bottlenose dolphin and harbour porpoise.
    Kalinichenko SG; Pushchin II
    J Chem Neuroanat; 2008 Jul; 35(4):364-70. PubMed ID: 18455363
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibitory networks in epilepsy-associated gangliogliomas and in the perilesional epileptic cortex.
    Aronica E; Redeker S; Boer K; Spliet WG; van Rijen PC; Gorter JA; Troost D
    Epilepsy Res; 2007 Apr; 74(1):33-44. PubMed ID: 17267178
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calcium-binding proteins, neuronal nitric oxide synthase, and GABA help to distinguish different pallial areas in the developing and adult chicken. I. Hippocampal formation and hyperpallium.
    Suárez J; Dávila JC; Real MA; Guirado S; Medina L
    J Comp Neurol; 2006 Aug; 497(5):751-71. PubMed ID: 16786551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The cerebral cortex of the pygmy hippopotamus, Hexaprotodon liberiensis (Cetartiodactyla, Hippopotamidae): MRI, cytoarchitecture, and neuronal morphology.
    Butti C; Ewan Fordyce R; Ann Raghanti M; Gu X; Bonar CJ; Wicinski BA; Wong EW; Roman J; Brake A; Eaves E; Spocter MA; Tang CY; Jacobs B; Sherwood CC; Hof PR
    Anat Rec (Hoboken); 2014 Apr; 297(4):670-700. PubMed ID: 24474726
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Parvalbumin neurons in the forebrain as revealed by parvalbumin-Cre transgenic mice.
    Tanahira C; Higo S; Watanabe K; Tomioka R; Ebihara S; Kaneko T; Tamamaki N
    Neurosci Res; 2009 Mar; 63(3):213-23. PubMed ID: 19167436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immunocytochemical distribution of the cannabinoid CB1 receptor in the primate neocortex: a regional and laminar analysis.
    Eggan SM; Lewis DA
    Cereb Cortex; 2007 Jan; 17(1):175-91. PubMed ID: 16467563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thalamic nuclei in the opossum Monodelphis domestica.
    Olkowicz S; Turlejski K; Bartkowska K; Wielkopolska E; Djavadian RL
    J Chem Neuroanat; 2008 Oct; 36(2):85-97. PubMed ID: 18571895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Laminar fate of cortical GABAergic interneurons is dependent on both birthdate and phenotype.
    Rymar VV; Sadikot AF
    J Comp Neurol; 2007 Mar; 501(3):369-80. PubMed ID: 17245711
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Er81 is expressed in a subpopulation of layer 5 neurons in rodent and primate neocortices.
    Yoneshima H; Yamasaki S; Voelker CC; Molnár Z; Christophe E; Audinat E; Takemoto M; Nishiwaki M; Tsuji S; Fujita I; Yamamoto N
    Neuroscience; 2006; 137(2):401-12. PubMed ID: 16289830
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calbindin D-28K and parvalbumin expression in embryonic chick hippocampus is enhanced by prenatal auditory stimulation.
    Chaudhury S; Nag TC; Wadhwa S
    Brain Res; 2008 Jan; 1191():96-106. PubMed ID: 18096144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.