These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 16211799)

  • 1. Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics.
    Fernández EJ; Artal P
    J Opt Soc Am A Opt Image Sci Vis; 2005 Sep; 22(9):1732-8. PubMed ID: 16211799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accommodation with higher-order monochromatic aberrations corrected with adaptive optics.
    Chen L; Kruger PB; Hofer H; Singer B; Williams DR
    J Opt Soc Am A Opt Image Sci Vis; 2006 Jan; 23(1):1-8. PubMed ID: 16478055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weighted Zernike expansion with applications to the optical aberration of the human eye.
    Nam J; Rubinstein J
    J Opt Soc Am A Opt Image Sci Vis; 2005 Sep; 22(9):1709-16. PubMed ID: 16211797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing the dynamic wavefront aberrations in the human eye.
    Iskander DR; Collins MJ; Morelande MR; Zhu M
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):1969-80. PubMed ID: 15536899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Off-axis wave front measurements for optical correction in eccentric viewing.
    Lundström L; Unsbo P; Gustafsson J
    J Biomed Opt; 2005; 10(3):034002. PubMed ID: 16229646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binocular open-view Shack-Hartmann wavefront sensor with consecutive measurements of near triad and spherical aberration.
    Kobayashi M; Nakazawa N; Yamaguchi T; Otaki T; Hirohara Y; Mihashi T
    Appl Opt; 2008 Sep; 47(25):4619-26. PubMed ID: 18758533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of the holographic multivergence target in the subjective measurement of spherical refractive error and amplitude of accommodation of the human eye.
    Avudainayagam KV; Avudainayagam CS; Nguyen N; Chiam KW; Truong C
    J Opt Soc Am A Opt Image Sci Vis; 2007 Oct; 24(10):3037-44. PubMed ID: 17912293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive optics system for investigation of the effect of the aberration dynamics of the human eye on steady-state accommodation control.
    Hampson KM; Paterson C; Dainty C; Mallen EA
    J Opt Soc Am A Opt Image Sci Vis; 2006 May; 23(5):1082-8. PubMed ID: 16642185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Wavefront analysis and adaptive optics].
    Stevens JD; Sekundo W
    Ophthalmologe; 2003 Aug; 100(8):593-602. PubMed ID: 12955439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accommodation-based liquid crystal adaptive optics system for large ocular aberration correction.
    Mu Q; Cao Z; Li C; Jiang B; Hu L; Xuan L
    Opt Lett; 2008 Dec; 33(24):2898-900. PubMed ID: 19079485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual wavefront sensing channel monocular adaptive optics system for accommodation studies.
    Hampson KM; Chin SS; Mallen EA
    Opt Express; 2009 Sep; 17(20):18229-40. PubMed ID: 19907614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ocular aberrations up to the infrared range: from 632.8 to 1070 nm.
    Fernández EJ; Artal P
    Opt Express; 2008 Dec; 16(26):21199-208. PubMed ID: 19104549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The spatially resolved refractometer.
    Burns SA
    J Refract Surg; 2000; 16(5):S566-9. PubMed ID: 11019874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are optical aberrations during accommodation a significant problem for refractive surgery?
    Artal P; Fernández EJ; Manzanera S
    J Refract Surg; 2002; 18(5):S563-6. PubMed ID: 12361158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental investigation of accommodation in eyes fit with multifocal contact lenses using a clinical auto-refractor.
    Altoaimi BH; Kollbaum P; Meyer D; Bradley A
    Ophthalmic Physiol Opt; 2018 Mar; 38(2):152-163. PubMed ID: 29315718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of ocular anterior segment dimension and wavefront aberration simultaneously during accommodation.
    Shi G; Wang Y; Yuan Y; Wei L; Lv F; Zhang Y
    J Biomed Opt; 2012 Dec; 17(12):120501. PubMed ID: 23192320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of aberrations in different types of progressive power lenses.
    Villegas EA; Artal P
    Ophthalmic Physiol Opt; 2004 Sep; 24(5):419-26. PubMed ID: 15315656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Accuracy of the autorefractor power refractor in clinical work--a comparative study].
    Schittkowski M; Hucks-Sievers S; Krentz H; Guthoff R
    Klin Monbl Augenheilkd; 2005 Dec; 222(12):983-92. PubMed ID: 16380885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal dynamics of ocular aberrations: monocular vs binocular vision.
    Mira-Agudelo A; Lundström L; Artal P
    Ophthalmic Physiol Opt; 2009 May; 29(3):256-63. PubMed ID: 19422556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accommodative lag and fluctuations when optical aberrations are manipulated.
    Gambra E; Sawides L; Dorronsoro C; Marcos S
    J Vis; 2009 Jun; 9(6):4.1-15. PubMed ID: 19761295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.