These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 16211808)

  • 1. Axial irradiance of a focused beam.
    Mahajan VN
    J Opt Soc Am A Opt Image Sci Vis; 2005 Sep; 22(9):1814-23. PubMed ID: 16211808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aberrated lenses for generating flattened laser irradiance.
    Pu J; Zhang H
    Appl Opt; 1998 Jul; 37(19):4200-5. PubMed ID: 18285862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Propagation equation of Gaussian beams through apertured focusing systems and parametric study of focal shift.
    Sun P; Liu J; Guan J; Wang G; Yu Y
    J Opt Soc Am A Opt Image Sci Vis; 2019 May; 36(5):818-825. PubMed ID: 31045009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beam quality factor of aberrated Laguerre-Gaussian optical beams.
    Mabena CM; Bell T; Mphuthi N; Harrison J; Naidoo D
    Opt Express; 2023 Jul; 31(16):26435-26450. PubMed ID: 37710505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strehl ratio of a Gaussian beam.
    Mahajan VN
    J Opt Soc Am A Opt Image Sci Vis; 2005 Sep; 22(9):1824-33. PubMed ID: 16211809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimum truncation of a Gaussian beam for propagation through atmospheric turbulence.
    Yura HT
    Appl Opt; 1995 May; 34(15):2774-9. PubMed ID: 21052424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axial irradiance for spherically aberrated holographic optical elements.
    Beléndez A; Carretero L; Fimia A
    Opt Lett; 1994 Sep; 19(18):1477-9. PubMed ID: 19855558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of spherical aberration on laser beam self-focusing in the atmosphere.
    Deng H; Ji X; Li X; Wang X
    Opt Lett; 2015 Aug; 40(16):3881-4. PubMed ID: 26274684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear focal shift due to the Kerr effect for a Gaussian beam focused by a lens.
    Aupart-Acosta A; Rosete-Aguilar M; Garduño-Mejía J; Rodríguez-Herrera OG; Ruiz C
    Appl Opt; 2023 Feb; 62(4):1088-1094. PubMed ID: 36821167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictions of Rayleigh's diffraction theory for the effect of focal shift in high-aperture systems.
    Li Y
    J Opt Soc Am A Opt Image Sci Vis; 2008 Jul; 25(7):1835-42. PubMed ID: 18594642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of primary spherical aberration on high-numerical-aperture focusing of a Laguerre-Gaussian beam.
    Singh RK; Senthilkumaran P; Singh K
    J Opt Soc Am A Opt Image Sci Vis; 2008 Jun; 25(6):1307-18. PubMed ID: 18516141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maréchal intensity criteria modified for gaussian beams.
    Lowenthal DD
    Appl Opt; 1974 Sep; 13(9):2126-33. PubMed ID: 20134640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration.
    Lock JA
    Appl Opt; 2004 Apr; 43(12):2532-44. PubMed ID: 15119623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape-invariance properties of a quartic-aberrated TEM00 Gaussian beam.
    Santarsiero M
    J Opt Soc Am A Opt Image Sci Vis; 2001 Jul; 18(7):1650-5. PubMed ID: 11444557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear change of on-axis pressure and intensity maxima positions and its relation with the linear focal shift effect.
    Makov YN; Sánchez-Morcillo VJ; Camarena F; Espinosa V
    Ultrasonics; 2008 Dec; 48(8):678-86. PubMed ID: 18442837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of primary spherical aberration, coma, astigmatism, and field curvature on the focusing of ultrashort pulses: Gaussian illumination and experiment.
    González-Galicia MA; Garduño-Mejía J; Rosete-Aguilar M; Bruce NC; Ortega-Martínez R
    J Opt Soc Am A Opt Image Sci Vis; 2011 Oct; 28(10):1990-4. PubMed ID: 21979503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical beam propagation model for clipped focused-Gaussian beams using vector diffraction theory.
    Gillen GD; Seck CM; Guha S
    Opt Express; 2010 Mar; 18(5):4023-40. PubMed ID: 20389417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gaussian beam weak scintillation: low-order turbulence effects and applicability of the Rytov method.
    Baker GJ
    J Opt Soc Am A Opt Image Sci Vis; 2006 Feb; 23(2):395-417. PubMed ID: 16477844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Focus correction in an apodized system with spherical aberration.
    Bernal-Molina P; Castejón-Mochón JF; Bradley A; López-Gil N
    J Opt Soc Am A Opt Image Sci Vis; 2015 Aug; 32(8):1556-63. PubMed ID: 26367299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustical tweezers using single spherically focused piston, X-cut, and Gaussian beams.
    Mitri FG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Oct; 62(10):1835-44. PubMed ID: 26470046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.