These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 16212176)

  • 41. The eAND process: enabling simultaneous nitrogen-removal and disinfection for WWTP effluent.
    Ding J; Zhao Q; Zhang Y; Wei L; Li W; Wang K
    Water Res; 2015 May; 74():122-31. PubMed ID: 25725203
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced ammonia nitrogen removal using consistent biological regeneration and ammonium exchange of zeolite in modified SBR process.
    Jung JY; Chung YC; Shin HS; Son DH
    Water Res; 2004 Jan; 38(2):347-54. PubMed ID: 14675646
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Denitrification rate and carbon source consumption in full-scale wastewater filtration.
    Jonsson L
    Water Sci Technol; 2004; 50(7):105-12. PubMed ID: 15553465
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor.
    Zeng RJ; Lemaire R; Yuan Z; Keller J
    Biotechnol Bioeng; 2003 Oct; 84(2):170-8. PubMed ID: 12966573
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Energy saving achieved by limited filamentous bulking under low dissolved oxygen: experimental validation in A/O process].
    Guo JH; Wang SY; Peng YZ; Zheng YN; Huang HJ; Ge SJ; Sun ZR
    Huan Jing Ke Xue; 2008 Dec; 29(12):3348-52. PubMed ID: 19256366
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nitrogen removal in a SBR using the OGAR process control system.
    Tomlins Z; Thomas M; Keller J; Audic JM; Urbain V
    Water Sci Technol; 2002; 46(4-5):125-30. PubMed ID: 12360999
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Controlling nitrogen removal using redox and ammonium sensors.
    Cecil D
    Water Sci Technol; 2003; 47(11):109-14. PubMed ID: 12906278
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimisation of nitrification-denitrification process in a sbr for the treatment of reject water via nitrite.
    Galí A; Dosta J; Mata-Alvarez J
    Environ Technol; 2007 May; 28(5):565-71. PubMed ID: 17615965
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development and implementation of an expert system to improve the control of nitrification and denitrification in the Vic wastewater treatment plant.
    Ribas F; Rodríguez-Roda I; Serrat J; Clara P; Comas J
    Environ Technol; 2008 May; 29(5):583-90. PubMed ID: 18661742
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Effects of influent flow distribution ratio on nitrogen removal in step-feed A/O process].
    Wang W; Wang SY; Sun YN; Yin FF; Peng YZ
    Huan Jing Ke Xue; 2009 Jan; 30(1):96-101. PubMed ID: 19353864
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modeling nitrogen removal in a constructed wetland treatment system.
    Sonavane PG; Munavalli GR
    Water Sci Technol; 2009; 60(2):301-9. PubMed ID: 19633371
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nutrient removal processes for low strength wastewater.
    Shin HS; Park MG; Jung JY
    Environ Technol; 2001 Aug; 22(8):889-95. PubMed ID: 11561946
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nitrogen removal via nitrite at normal temperature in A/O process.
    Peng YZ; Chen T; Tian WJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003 Jun; 38(6):1007-15. PubMed ID: 12774904
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ammonia removal from pretreated methane fermentation effluent through a soil trench system: a column experiment.
    Lei X; Fujimaki H; Lu Y; Zhang Z; Maekawa T
    Chemosphere; 2007 Feb; 66(11):2077-86. PubMed ID: 17109914
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Short-cut/Complete nitrification and denitrification in a pilot-scale plant treating actual domestic wastewater].
    Ma Y; Chen LQ; Peng YZ; Wu XL
    Huan Jing Ke Xue; 2006 Dec; 27(12):2477-82. PubMed ID: 17304844
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optimal aeration control in a nitrifying activated sludge process.
    Amand L; Carlsson B
    Water Res; 2012 May; 46(7):2101-10. PubMed ID: 22341831
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Real time control for reduced aeration and chemical consumption: a full scale study.
    Thornton A; Sunner N; Haeck M
    Water Sci Technol; 2010; 61(9):2169-75. PubMed ID: 20418611
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simultaneous removal of nitrogen and phosphorus from wastewater by means of FeS-based autotrophic denitrification.
    Li R; Niu J; Zhan X; Liu B
    Water Sci Technol; 2013; 67(12):2761-7. PubMed ID: 23787315
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Control for MUCT process operation using nitrate concentration in the secondary anoxic zone].
    Wang XL; Yin J; Gao S
    Huan Jing Ke Xue; 2012 Jan; 33(1):175-80. PubMed ID: 22452207
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants: effect of oxygenation level.
    Tallec G; Garnier J; Billen G; Gousailles M
    Water Res; 2006 Aug; 40(15):2972-80. PubMed ID: 16844187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.