These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 16212186)

  • 1. [Improvement of heavy metal removing strain by protoplast combination mutant].
    Yin H; Lu XY; Peng H; Ye JS; Huang BY; Zhang N
    Huan Jing Ke Xue; 2005 Jul; 26(4):147-51. PubMed ID: 16212186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of chromium biosorption by UV-HNO(2) cooperative mutagenesis in Candida utilis.
    Yin H; He B; Lu X; Peng H; Ye J; Yang F
    Water Res; 2008 Aug; 42(14):3981-9. PubMed ID: 18678388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatically mediated bioprecipitation of heavy metals from industrial wastes and single ion solutions by mammalian alkaline phosphatase.
    Chaudhuri G; Shah GA; Dey P; S G; Venu-Babu P; Thilagaraj WR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(1):79-85. PubMed ID: 23030390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation of heavy metals by calcifying macro-algae (Nitella pseudoflabellata): implications of redox insensitive end products.
    Gomes PI; Asaeda T
    Chemosphere; 2013 Aug; 92(10):1328-34. PubMed ID: 23773443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosurfactant of marine origin exhibiting heavy metal remediation properties.
    Das P; Mukherjee S; Sen R
    Bioresour Technol; 2009 Oct; 100(20):4887-90. PubMed ID: 19505818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergism of Pseudomonas aeruginosa and Fe0 for treatment of heavy metal contaminated effluents using small scale laboratory reactor.
    Singh R; Bishnoi NR; Kirrolia A; Kumar R
    Bioresour Technol; 2013 Jan; 127():49-58. PubMed ID: 23131622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cr(VI) detoxification by Desulfovibrio vulgaris strain Hildenborough: microbe-metal interactions studies.
    Goulhen F; Gloter A; Guyot F; Bruschi M
    Appl Microbiol Biotechnol; 2006 Aug; 71(6):892-7. PubMed ID: 16896506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selectivity in the heavy metal removal by exopolysaccharide-producing cyanobacteria.
    Micheletti E; Colica G; Viti C; Tamagnini P; De Philippis R
    J Appl Microbiol; 2008 Jul; 105(1):88-94. PubMed ID: 18248368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulation of heavy metals (Cu, Cr, Pb and Cd) in freshwater micro algae (Chlorella sp.).
    Kumar RM; Frankilin J; Raj SP
    J Environ Sci Eng; 2013 Jul; 55(3):371-6. PubMed ID: 25509955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of Cr(VI) and Ni(II) from aqueous solution by fused yeast: study of cations release and biosorption mechanism.
    Yin H; He B; Peng H; Ye J; Yang F; Zhang N
    J Hazard Mater; 2008 Oct; 158(2-3):568-76. PubMed ID: 18346847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Search of heavy metals biosorbents among yeasts of different taxonomic groups].
    Lozovaia OG; Kasatkina TP; Podgorskiĭ VS
    Mikrobiol Z; 2004; 66(2):92-101. PubMed ID: 15208860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining strains of lactic acid bacteria may reduce their toxin and heavy metal removal efficiency from aqueous solution.
    Halttunen T; Collado MC; El-Nezami H; Meriluoto J; Salminen S
    Lett Appl Microbiol; 2008 Feb; 46(2):160-5. PubMed ID: 18028332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal removal of cyanobacterial exopolysaccharides by uronic acid content and monosaccharide composition.
    Ozturk S; Aslim B; Suludere Z; Tan S
    Carbohydr Polym; 2014 Jan; 101():265-71. PubMed ID: 24299773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removing heavy metals from synthetic effluents using "kamikaze" Saccharomyces cerevisiae cells.
    Ruta L; Paraschivescu C; Matache M; Avramescu S; Farcasanu IC
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):763-71. PubMed ID: 19795117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of cadmium resistance in anaerobic bacterial enrichments degrading pentachlorophenol.
    Kamashwaran SR; Crawford DL
    Can J Microbiol; 2003 Jul; 49(7):418-24. PubMed ID: 14569282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined strategy for the precipitation of heavy metals and biodegradation of petroleum in industrial wastewaters.
    Pérez RM; Cabrera G; Gómez JM; Abalos A; Cantero D
    J Hazard Mater; 2010 Oct; 182(1-3):896-902. PubMed ID: 20667656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Mechanism of heavy-metal tolerance in Pseudomonas aeruginosa ZGKD2].
    Zhang YX; Wang J; Chai TY; Zhang Q; Liu JG; Li X; Bai ZQ; Su ZJ
    Huan Jing Ke Xue; 2012 Oct; 33(10):3613-9. PubMed ID: 23233996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioadsorption and bioaccumulation of chromium trivalent in Cr(III)-tolerant microalgae: a mechanisms for chromium resistance.
    Pereira M; Bartolomé MC; Sánchez-Fortún S
    Chemosphere; 2013 Oct; 93(6):1057-63. PubMed ID: 23810518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: role of mineral components in biochars.
    Xu X; Cao X; Zhao L
    Chemosphere; 2013 Aug; 92(8):955-61. PubMed ID: 23591132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering chlorpyrifos-degrading Stenotrophomonas sp. YC-1 for heavy metal accumulation and enhanced chlorpyrifos degradation.
    Liu R; Jiang H; Xu P; Qiao C; Zhou Q; Yang C
    Biodegradation; 2014 Nov; 25(6):903-10. PubMed ID: 25151179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.