BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 16212402)

  • 1. The platelet microparticle proteome.
    Garcia BA; Smalley DM; Cho H; Shabanowitz J; Ley K; Hunt DF
    J Proteome Res; 2005; 4(5):1516-21. PubMed ID: 16212402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enrichment of human platelet membranes for proteomic analysis.
    Greening DW; Glenister KM; Sparrow RL; Simpson RJ
    Methods Mol Biol; 2009; 528():245-58. PubMed ID: 19153697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applying proteomics technology to platelet research.
    García A; Watson SP; Dwek RA; Zitzmann N
    Mass Spectrom Rev; 2005; 24(6):918-30. PubMed ID: 15599945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of indirect and direct approaches using ion-trap and Fourier transform ion cyclotron resonance mass spectrometry for exploring viperid venom proteomes.
    Fox JW; Ma L; Nelson K; Sherman NE; Serrano SM
    Toxicon; 2006 May; 47(6):700-14. PubMed ID: 16574175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The human platelet proteome mapped by peptide-centric proteomics: a functional protein profile.
    Martens L; Van Damme P; Van Damme J; Staes A; Timmerman E; Ghesquière B; Thomas GR; Vandekerckhove J; Gevaert K
    Proteomics; 2005 Aug; 5(12):3193-204. PubMed ID: 16038019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A functional proteomic method for the enrichment of peripheral membrane proteins reveals the collagen binding protein Hsp47 is exposed on the surface of activated human platelets.
    Kaiser WJ; Holbrook LM; Tucker KL; Stanley RG; Gibbins JM
    J Proteome Res; 2009 Jun; 8(6):2903-14. PubMed ID: 19341245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput analysis of rat liver plasma membrane proteome by a nonelectrophoretic in-gel tryptic digestion coupled with mass spectrometry identification.
    Cao R; He Q; Zhou J; He Q; Liu Z; Wang X; Chen P; Xie J; Liang S
    J Proteome Res; 2008 Feb; 7(2):535-45. PubMed ID: 18166008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-depth proteomic profiling of the normal human kidney glomerulus using two-dimensional protein prefractionation in combination with liquid chromatography-tandem mass spectrometry.
    Miyamoto M; Yoshida Y; Taguchi I; Nagasaka Y; Tasaki M; Zhang Y; Xu B; Nameta M; Sezaki H; Cuellar LM; Osawa T; Morishita H; Sekiyama S; Yaoita E; Kimura K; Yamamoto T
    J Proteome Res; 2007 Sep; 6(9):3680-90. PubMed ID: 17711322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of two tandem mass spectrometry-based methods for analyzing the proteome of healthy human lens fibers.
    Zhang C; Liu P; Wang N; Li Y; Wang L
    Mol Vis; 2007 Oct; 13():1873-7. PubMed ID: 17960125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of platelet factor 4 and beta-thromboglobulin by profiling and liquid chromatography tandem mass spectrometry of supernatant peptides in stored apheresis and buffy-coat platelet concentrates.
    Wurtz V; Hechler B; Ohlmann P; Isola H; Schaeffer-Reiss C; Cazenave JP; Van Dorsselaer A; Gachet C
    Transfusion; 2007 Jun; 47(6):1099-101. PubMed ID: 17524104
    [No Abstract]   [Full Text] [Related]  

  • 11. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets.
    Sinauridze EI; Kireev DA; Popenko NY; Pichugin AV; Panteleev MA; Krymskaya OV; Ataullakhanov FI
    Thromb Haemost; 2007 Mar; 97(3):425-34. PubMed ID: 17334510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteome analysis of signaling cascades in human platelets.
    García A
    Blood Cells Mol Dis; 2006; 36(2):152-6. PubMed ID: 16487730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Profiling of myelin proteins by 2D-gel electrophoresis and multidimensional liquid chromatography coupled to MALDI TOF-TOF mass spectrometry.
    Vanrobaeys F; Van Coster R; Dhondt G; Devreese B; Van Beeumen J
    J Proteome Res; 2005; 4(6):2283-93. PubMed ID: 16335977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of genetic variation in the region of the GPIIIa gene, on Pl expression bias and GPIIb/IIIa receptor density in platelets.
    O'Halloran AM; Curtin R; O'Connor F; Dooley M; Fitzgerald A; O'Brien JK; Fitzgerald DJ; Shields DC
    Br J Haematol; 2006 Feb; 132(4):494-502. PubMed ID: 16412022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomics in platelet science.
    Perrotta PL; Bahou WF
    Curr Hematol Rep; 2004 Nov; 3(6):462-9. PubMed ID: 15496282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct proteome features of plasma microparticles.
    Jin M; Drwal G; Bourgeois T; Saltz J; Wu HM
    Proteomics; 2005 May; 5(7):1940-52. PubMed ID: 15825151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of activated platelets in canine blood by use of flow cytometry.
    Wills TB; Wardrop KJ; Meyers KM
    Am J Vet Res; 2006 Jan; 67(1):56-63. PubMed ID: 16426212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of platelet glycoprotein Ib in platelet microparticle mediated neutrophil activation.
    Lo SC; Hung CY; Lin DT; Peng HC; Huang TF
    J Biomed Sci; 2006 Nov; 13(6):787-96. PubMed ID: 16897582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Evaluation and problems on platelet function tests].
    Kume S
    Nihon Rinsho; 1997 Mar; 55 Suppl 1():94-101. PubMed ID: 9097565
    [No Abstract]   [Full Text] [Related]  

  • 20. Exploring the platelet proteome via combinatorial, hexapeptide ligand libraries.
    Guerrier L; Claverol S; Fortis F; Rinalducci S; Timperio AM; Antonioli P; Jandrot-Perrus M; Boschetti E; Righetti PG
    J Proteome Res; 2007 Nov; 6(11):4290-303. PubMed ID: 17918985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.