BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 16212411)

  • 21. Systematic secretome analyses of rice leaf and seed callus suspension-cultured cells: workflow development and establishment of high-density two-dimensional gel reference maps.
    Jung YH; Jeong SH; Kim SH; Singh R; Lee JE; Cho YS; Agrawal GK; Rakwal R; Jwa NS
    J Proteome Res; 2008 Dec; 7(12):5187-210. PubMed ID: 18986194
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proteomic analysis of phosphoproteins regulated by abscisic acid in rice leaves.
    He H; Li J
    Biochem Biophys Res Commun; 2008 Jul; 371(4):883-8. PubMed ID: 18468508
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proteomic responses of rice young panicles to salinity.
    Dooki AD; Mayer-Posner FJ; Askari H; Zaiee AA; Salekdeh GH
    Proteomics; 2006 Dec; 6(24):6498-507. PubMed ID: 17163441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proteomic analysis of rice leaves during drought stress and recovery.
    Salekdeh GH; Siopongco J; Wade LJ; Ghareyazie B; Bennett J
    Proteomics; 2002 Sep; 2(9):1131-45. PubMed ID: 12362332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteome approach to characterize the methylmalonate-semialdehyde dehydrogenase that is regulated by gibberellin.
    Tanaka N; Takahashi H; Kitano H; Matsuoka M; Akao S; Uchimiya H; Komatsu S
    J Proteome Res; 2005; 4(5):1575-82. PubMed ID: 16212409
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteome analysis of rice uppermost internodes at the milky stage.
    Yang P; Liang Y; Shen S; Kuang T
    Proteomics; 2006 Jun; 6(11):3330-8. PubMed ID: 16637012
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf.
    Kim DW; Rakwal R; Agrawal GK; Jung YH; Shibato J; Jwa NS; Iwahashi Y; Iwahashi H; Kim DH; Shim IeS; Usui K
    Electrophoresis; 2005 Dec; 26(23):4521-39. PubMed ID: 16315177
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative detection of phosphoproteins by combination of two-dimensional difference gel electrophoresis and phosphospecific fluorescent staining.
    Stasyk T; Morandell S; Bakry R; Feuerstein I; Huck CW; Stecher G; Bonn GK; Huber LA
    Electrophoresis; 2005 Jul; 26(14):2850-4. PubMed ID: 15966015
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative analysis of young panicle proteome in thermo-sensitive genic male-sterile rice Zhu-1S under sterile and fertile conditions.
    Xiao X; Yang Y; Yang Y; Lin J; Tang D; Liu X
    Biotechnol Lett; 2009 Jan; 31(1):157-61. PubMed ID: 18923912
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteomic analysis of cytoskeleton-associated RNA binding proteins in developing rice seed.
    Doroshenk KA; Crofts AJ; Morris RT; Wyrick JJ; Okita TW
    J Proteome Res; 2009 Oct; 8(10):4641-53. PubMed ID: 19685898
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of host-inducing proteome changes in bifidobacterium longum NCC2705 grown in Vivo.
    Yuan J; Wang B; Sun Z; Bo X; Yuan X; He X; Zhao H; Du X; Wang F; Jiang Z; Zhang L; Jia L; Wang Y; Wei K; Wang J; Zhang X; Sun Y; Huang L; Zeng M
    J Proteome Res; 2008 Jan; 7(1):375-85. PubMed ID: 18027903
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two-dimensional gel electrophoresis maps of the proteome and phosphoproteome of primitively cultured rat mesangial cells.
    Jiang XS; Tang LY; Cao XJ; Zhou H; Xia QC; Wu JR; Zeng R
    Electrophoresis; 2005 Dec; 26(23):4540-62. PubMed ID: 16315178
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in protein expression profiles between a low phytic acid rice ( Oryza sativa L. Ssp. japonica) line and its parental line: a proteomic and bioinformatic approach.
    Emami K; Morris NJ; Cockell SJ; Golebiowska G; Shu QY; Gatehouse AM
    J Agric Food Chem; 2010 Jun; 58(11):6912-22. PubMed ID: 20441221
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Profiling of myelin proteins by 2D-gel electrophoresis and multidimensional liquid chromatography coupled to MALDI TOF-TOF mass spectrometry.
    Vanrobaeys F; Van Coster R; Dhondt G; Devreese B; Van Beeumen J
    J Proteome Res; 2005; 4(6):2283-93. PubMed ID: 16335977
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of novel phosphoproteins in signaling pathways triggered by latent membrane protein 1 using functional proteomics technology.
    Yan G; Li L; Tao Y; Liu S; Liu Y; Luo W; Wu Y; Tang M; Dong Z; Cao Y
    Proteomics; 2006 Mar; 6(6):1810-21. PubMed ID: 16470631
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteomic analysis of rice seedlings during cold stress.
    Hashimoto M; Komatsu S
    Proteomics; 2007 Apr; 7(8):1293-302. PubMed ID: 17380535
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Large-scale study of phosphoproteins involved in long-term potentiation in the rat dentate gyrus in vivo.
    Chardonnet S; Le Marechal P; Cheval H; Le Caer JP; Decottignies P; Laprevote O; Laroche S; Davis S
    Eur J Neurosci; 2008 Jun; 27(11):2985-98. PubMed ID: 18588538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proteome analysis of fatty liver in feed-deprived dairy cows reveals interaction of fuel sensing, calcium, fatty acid, and glycogen metabolism.
    Kuhla B; Albrecht D; Kuhla S; Metges CC
    Physiol Genomics; 2009 Apr; 37(2):88-98. PubMed ID: 19240300
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shotgun proteomic analysis for detecting differentially expressed proteins in the reduced culm number rice.
    Lee J; Jiang W; Qiao Y; Cho YI; Woo MO; Chin JH; Kwon SW; Hong SS; Choi IY; Koh HJ
    Proteomics; 2011 Feb; 11(3):455-68. PubMed ID: 21268274
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proteomics analysis of human cerebrospinal fluid.
    Yuan X; Desiderio DM
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Feb; 815(1-2):179-89. PubMed ID: 15652808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.