BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 16212421)

  • 1. Coupling interaction between thromboxane A2 receptor and alpha-13 subunit of guanine nucleotide-binding protein.
    Chou KC
    J Proteome Res; 2005; 4(5):1681-6. PubMed ID: 16212421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of GRK2 RH domain-dependent regulation of GPCR coupling to heterotrimeric G proteins.
    Sterne-Marr R; Dhami GK; Tesmer JJ; Ferguson SS
    Methods Enzymol; 2004; 390():310-36. PubMed ID: 15488186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function.
    Kristiansen K
    Pharmacol Ther; 2004 Jul; 103(1):21-80. PubMed ID: 15251227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutational analysis of the highly conserved ERY motif of the thromboxane A2 receptor: alternative role in G protein-coupled receptor signaling.
    Capra V; Veltri A; Foglia C; Crimaldi L; Habib A; Parenti M; Rovati GE
    Mol Pharmacol; 2004 Oct; 66(4):880-9. PubMed ID: 15229298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active peptidic mimics of the second intracellular loop of the V(1A) vasopressin receptor are structurally related to the second intracellular rhodopsin loop: a combined 1H NMR and biochemical study.
    Déméné H; Granier S; Muller D; Guillon G; Dufour MN; Delsuc MA; Hibert M; Pascal R; Mendre C
    Biochemistry; 2003 Jul; 42(27):8204-13. PubMed ID: 12846569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical analysis and prediction of functional residues effective for GPCR-G-protein coupling selectivity.
    Muramatsu T; Suwa M
    Protein Eng Des Sel; 2006 Jun; 19(6):277-83. PubMed ID: 16565146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D structural model of the G-protein-coupled cannabinoid CB2 receptor.
    Xie XQ; Chen JZ; Billings EM
    Proteins; 2003 Nov; 53(2):307-19. PubMed ID: 14517981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide interactions with G-protein coupled receptors.
    Marshall GR
    Biopolymers; 2001; 60(3):246-77. PubMed ID: 11774230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and functional characterization of the first intracellular loop of human thromboxane A2 receptor.
    Geng L; Wu J; So SP; Huang G; Ruan KH
    Arch Biochem Biophys; 2004 Mar; 423(2):253-65. PubMed ID: 15001390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Snapshot of activated G proteins at the membrane: the Galphaq-GRK2-Gbetagamma complex.
    Tesmer VM; Kawano T; Shankaranarayanan A; Kozasa T; Tesmer JJ
    Science; 2005 Dec; 310(5754):1686-90. PubMed ID: 16339447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A G protein-coupled receptor at work: the rhodopsin model.
    Hofmann KP; Scheerer P; Hildebrand PW; Choe HW; Park JH; Heck M; Ernst OP
    Trends Biochem Sci; 2009 Nov; 34(11):540-52. PubMed ID: 19836958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Receptor-mediated activation of heterotrimeric G-proteins: current structural insights.
    Johnston CA; Siderovski DP
    Mol Pharmacol; 2007 Aug; 72(2):219-30. PubMed ID: 17430994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-based virtual screening of chemical databases. II. Are homology models of G-Protein Coupled Receptors suitable targets?
    Bissantz C; Bernard P; Hibert M; Rognan D
    Proteins; 2003 Jan; 50(1):5-25. PubMed ID: 12471595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis of function in heterotrimeric G proteins.
    Oldham WM; Hamm HE
    Q Rev Biophys; 2006 May; 39(2):117-66. PubMed ID: 16923326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of interactions responsible for vasopressin binding to human neurohypophyseal hormone receptors-molecular dynamics study of the activated receptor-vasopressin-G(alpha) systems.
    Slusarz MJ; Giełdoń A; Slusarz R; Ciarkowski J
    J Pept Sci; 2006 Mar; 12(3):180-9. PubMed ID: 16114100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug design strategies for targeting G-protein-coupled receptors.
    Klabunde T; Hessler G
    Chembiochem; 2002 Oct; 3(10):928-44. PubMed ID: 12362358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular analysis of the interaction between the intracellular loops of the human serotonin receptor type 6 (5-HT6) and the alpha subunit of GS protein.
    Kang H; Lee WK; Choi YH; Vukoti KM; Bang WG; Yu YG
    Biochem Biophys Res Commun; 2005 Apr; 329(2):684-92. PubMed ID: 15737640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular modeling of the second extracellular loop of G-protein coupled receptors and its implication on structure-based virtual screening.
    de Graaf C; Foata N; Engkvist O; Rognan D
    Proteins; 2008 May; 71(2):599-620. PubMed ID: 17972285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A surface-exposed region of G(salpha) in which substitutions decrease receptor-mediated activation and increase receptor affinity.
    Grishina G; Berlot CH
    Mol Pharmacol; 2000 Jun; 57(6):1081-92. PubMed ID: 10825378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.