BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16212576)

  • 41. The influence of 30-day-old Streptococcus mutans biofilm on the surface of esthetic restorative materials--an in vitro study.
    FĂșcio SB; Carvalho FG; Sobrinho LC; Sinhoreti MA; Puppin-Rontani RM
    J Dent; 2008 Oct; 36(10):833-9. PubMed ID: 18621456
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of material characteristics and/or surface topography on biofilm development.
    Teughels W; Van Assche N; Sliepen I; Quirynen M
    Clin Oral Implants Res; 2006 Oct; 17 Suppl 2():68-81. PubMed ID: 16968383
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: an in situ investigation of biofilm rheology.
    Stoodley P; Lewandowski Z; Boyle JD; Lappin-Scott HM
    Biotechnol Bioeng; 1999 Oct; 65(1):83-92. PubMed ID: 10440674
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hydrodynamic characteristics and gas-liquid mass transfer in a biofilm airlift suspension reactor.
    Nicolella C; van Loosdrecht MC; van der Lans RG; Heijnen JJ
    Biotechnol Bioeng; 1998 Dec; 60(5):627-35. PubMed ID: 10099471
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The immune response of oral epithelial cells induced by single-species and complex naturally formed biofilms.
    Eberhard J; Pietschmann R; Falk W; Jepsen S; Dommisch H
    Oral Microbiol Immunol; 2009 Aug; 24(4):325-30. PubMed ID: 19572896
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Internal and external mass transfer in biofilms grown at various flow velocities.
    Beyenal H; Lewandowski Z
    Biotechnol Prog; 2002; 18(1):55-61. PubMed ID: 11822900
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Combined effects of NaF and SLS on acid- and polysaccharide-formation of biofilm and planktonic cells.
    Petersen FC; Assev S; Scheie AA
    Arch Oral Biol; 2006 Aug; 51(8):665-71. PubMed ID: 16540078
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Targets for hydrogen-peroxide-induced damage to suspension and biofilm cells of Streptococcus mutans.
    Baldeck JD; Marquis RE
    Can J Microbiol; 2008 Oct; 54(10):868-75. PubMed ID: 18923556
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mutans streptococci and the development of dental plaque.
    Seminario A; Broukal Z; IvancakovĂĄ R
    Prague Med Rep; 2005; 106(4):349-58. PubMed ID: 16572928
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microstructural differences between single-species and dual-species biofilms of Streptococcus mutans and Veillonella parvula, before and after exposure to chlorhexidine.
    Kara D; Luppens SB; van Marle J; Ozok R; ten Cate JM
    FEMS Microbiol Lett; 2007 Jun; 271(1):90-7. PubMed ID: 17403046
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Streptococcus mutans biofilm changes surface-topography of resin composites.
    Beyth N; Bahir R; Matalon S; Domb AJ; Weiss EI
    Dent Mater; 2008 Jun; 24(6):732-6. PubMed ID: 17897707
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anti-biofilm effect of dental adhesive with cationic monomer.
    Li F; Chai ZG; Sun MN; Wang F; Ma S; Zhang L; Fang M; Chen JH
    J Dent Res; 2009 Apr; 88(4):372-6. PubMed ID: 19407160
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of commonly used food preservatives on biofilm formation of Streptococcus mutans in vitro.
    Al-Ahmad A; Wiedmann-Al-Ahmad M; Auschill TM; Follo M; Braun G; Hellwig E; Arweiler NB
    Arch Oral Biol; 2008 Aug; 53(8):765-72. PubMed ID: 18395697
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of recombinase A deficiency on biofilm formation by Streptococcus mutans.
    Inagaki S; Matsumoto-Nakano M; Fujita K; Nagayama K; Funao J; Ooshima T
    Oral Microbiol Immunol; 2009 Apr; 24(2):104-8. PubMed ID: 19239636
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of oxazaborolidine activity on Streptococcus mutans biofilm formation.
    Jabbour A; Srebnik M; Zaks B; Dembitsky V; Steinberg D
    Int J Antimicrob Agents; 2005 Dec; 26(6):491-6. PubMed ID: 16280242
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The inability of Streptococcus mutans and Lactobacillus acidophilus to form a biofilm in vitro on dentine pretreated with ozone.
    Knight GM; McIntyre JM; Craig GG; Mulyani ; Zilm PS
    Aust Dent J; 2008 Dec; 53(4):349-53. PubMed ID: 19133951
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of oxygen gradients on the activity and microbial community structure of a nitrifying, membrane-aerated biofilm.
    Downing LS; Nerenberg R
    Biotechnol Bioeng; 2008 Dec; 101(6):1193-204. PubMed ID: 18767185
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microstructure and mechanical properties of in situ Streptococcus mutans biofilms.
    Waters MS; Kundu S; Lin NJ; Lin-Gibson S
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):327-32. PubMed ID: 24351115
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interaction between GIC and S. sanguis biofilms: antibacterial properties and changes of surface hardness.
    Hengtrakool C; Pearson GJ; Wilson M
    J Dent; 2006 Sep; 34(8):588-97. PubMed ID: 16540228
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Novel anti-adherence activity of mulberry leaves: inhibition of Streptococcus mutans biofilm by 1-deoxynojirimycin isolated from Morus alba.
    Islam B; Khan SN; Haque I; Alam M; Mushfiq M; Khan AU
    J Antimicrob Chemother; 2008 Oct; 62(4):751-7. PubMed ID: 18565974
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.