These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

587 related articles for article (PubMed ID: 16212700)

  • 1. Toward a unified model of vertebrate rod phototransduction.
    Hamer RD; Nicholas SC; Tranchina D; Lamb TD; Jarvinen JL
    Vis Neurosci; 2005; 22(4):417-36. PubMed ID: 16212700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Ca++-dependent gain changes in PDE activation in vertebrate rod phototransduction.
    Hamer RD
    Mol Vis; 2000 Dec; 6():265-86. PubMed ID: 11139649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple steps of phosphorylation of activated rhodopsin can account for the reproducibility of vertebrate rod single-photon responses.
    Hamer RD; Nicholas SC; Tranchina D; Liebman PA; Lamb TD
    J Gen Physiol; 2003 Oct; 122(4):419-44. PubMed ID: 12975449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational analysis of vertebrate phototransduction: combined quantitative and qualitative modeling of dark- and light-adapted responses in amphibian rods.
    Hamer RD
    Vis Neurosci; 2000; 17(5):679-99. PubMed ID: 11153649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid stochastic/deterministic model of single photon response and light adaptation in mouse rods.
    Beelen CJ; Asteriti S; Cangiano L; Koch KW; Dell'Orco D
    Comput Struct Biotechnol J; 2021; 19():3720-3734. PubMed ID: 34285774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of turn-offs of frog rod phototransduction cascade.
    Astakhova LA; Firsov ML; Govardovskii VI
    J Gen Physiol; 2008 Nov; 132(5):587-604. PubMed ID: 18955597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative modeling of the molecular steps underlying shut-off of rhodopsin activity in rod phototransduction.
    Lamb TD; Kraft TW
    Mol Vis; 2016; 22():674-96. PubMed ID: 27375353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origins of the phototransduction delay as inferred from stochastic and deterministic simulation of the amplification cascade.
    Rotov AY; Astakhova LA; Firsov ML; Govardovskii VI
    Mol Vis; 2017; 23():416-430. PubMed ID: 28744093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of steady phosphodiesterase activity in the kinetics and sensitivity of the light-adapted salamander rod photoresponse.
    Nikonov S; Lamb TD; Pugh EN
    J Gen Physiol; 2000 Dec; 116(6):795-824. PubMed ID: 11099349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods.
    Berry J; Frederiksen R; Yao Y; Nymark S; Chen J; Cornwall C
    J Neurosci; 2016 Jun; 36(26):6973-87. PubMed ID: 27358455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variation in rhodopsin kinase expression alters the dim flash response shut off and the light adaptation in rod photoreceptors.
    Sakurai K; Young JE; Kefalov VJ; Khani SC
    Invest Ophthalmol Vis Sci; 2011 Aug; 52(9):6793-800. PubMed ID: 21474765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of 11-cis 13-demethylretinal on phototransduction in bleach-adapted rod and cone photoreceptors.
    Corson DW; Kefalov VJ; Cornwall MC; Crouch RK
    J Gen Physiol; 2000 Aug; 116(2):283-97. PubMed ID: 10919871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of mouse rod response decay by rhodopsin kinase and recoverin.
    Chen CK; Woodruff ML; Chen FS; Chen Y; Cilluffo MC; Tranchina D; Fain GL
    J Neurosci; 2012 Nov; 32(45):15998-6006. PubMed ID: 23136436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhodopsin kinase and recoverin modulate phosphodiesterase during mouse photoreceptor light adaptation.
    Chen CK; Woodruff ML; Fain GL
    J Gen Physiol; 2015 Mar; 145(3):213-24. PubMed ID: 25667411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional comparisons of visual arrestins in rod photoreceptors of transgenic mice.
    Chan S; Rubin WW; Mendez A; Liu X; Song X; Hanson SM; Craft CM; Gurevich VV; Burns ME; Chen J
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):1968-75. PubMed ID: 17460248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conditioning light differentially desensitizes rod phototransduction mediated by native and 9-demethyl analog visual pigment.
    Corson DW; Pepperberg DR
    Vis Neurosci; 2003; 20(1):29-36. PubMed ID: 12699081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two realms of dark adaptation.
    Firsov ML; Kolesnikov AV; Golobokova EY; Govardovskii VI
    Vision Res; 2005 Jan; 45(2):147-51. PubMed ID: 15581916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light responses and light adaptation in rat retinal rods at different temperatures.
    Nymark S; Heikkinen H; Haldin C; Donner K; Koskelainen A
    J Physiol; 2005 Sep; 567(Pt 3):923-38. PubMed ID: 16037091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of recoverin in rod photoreceptor light adaptation.
    Morshedian A; Woodruff ML; Fain GL
    J Physiol; 2018 Apr; 596(8):1513-1526. PubMed ID: 29435986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoresponses of human rods in vivo derived from paired-flash electroretinograms.
    Pepperberg DR; Birch DG; Hood DC
    Vis Neurosci; 1997; 14(1):73-82. PubMed ID: 9057270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.