BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 16212707)

  • 1. Photoreceptors in the rat retina are specifically vulnerable to both hypoxia and hyperoxia.
    Wellard J; Lee D; Valter K; Stone J
    Vis Neurosci; 2005; 22(4):501-7. PubMed ID: 16212707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue oxygen during a critical developmental period controls the death and survival of photoreceptors.
    Maslim J; Valter K; Egensperger R; Holländer H; Stone J
    Invest Ophthalmol Vis Sci; 1997 Aug; 38(9):1667-77. PubMed ID: 9286255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of oxygen and bFGF on the vulnerability of photoreceptors to light damage.
    Bowers F; Valter K; Chan S; Walsh N; Maslim J; Stone J
    Invest Ophthalmol Vis Sci; 2001 Mar; 42(3):804-15. PubMed ID: 11222544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoreceptor dystrophy in the RCS rat: roles of oxygen, debris, and bFGF.
    Valter K; Maslim J; Bowers F; Stone J
    Invest Ophthalmol Vis Sci; 1998 Nov; 39(12):2427-42. PubMed ID: 9804151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversal of functional loss in the P23H-3 rat retina by management of ambient light.
    Jozwick C; Valter K; Stone J
    Exp Eye Res; 2006 Nov; 83(5):1074-80. PubMed ID: 16822506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light exposure causes functional changes in the retina: increased photoreceptor cation channel permeability, photoreceptor apoptosis, and altered retinal metabolic function.
    Yu TY; Acosta ML; Ready S; Cheong YL; Kalloniatis M
    J Neurochem; 2007 Oct; 103(2):714-24. PubMed ID: 17623037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperoxia causes decreased expression of vascular endothelial growth factor and endothelial cell apoptosis in adult retina.
    Yamada H; Yamada E; Hackett SF; Ozaki H; Okamoto N; Campochiaro PA
    J Cell Physiol; 1999 May; 179(2):149-56. PubMed ID: 10199554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunohistochemical evidence of synaptic retraction, cytoarchitectural remodeling, and cell death in the inner retina of the rat model of oygen-induced retinopathy (OIR).
    Dorfman AL; Cuenca N; Pinilla I; Chemtob S; Lachapelle P
    Invest Ophthalmol Vis Sci; 2011 Mar; 52(3):1693-708. PubMed ID: 21071736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental damage to the retina and preconditioning: contrasting effects of light and hyperoxic stress.
    Zhu Y; Valter K; Stone J
    Invest Ophthalmol Vis Sci; 2010 Sep; 51(9):4821-30. PubMed ID: 20393118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resistance of photoreceptors in the C57BL/6-c2J, C57BL/6J, and BALB/cJ mouse strains to oxygen stress: evidence of an oxygen phenotype.
    Walsh N; Bravo-Nuevo A; Geller S; Stone J
    Curr Eye Res; 2004 Dec; 29(6):441-7. PubMed ID: 15764088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression and role of the early-response gene Oxr1 in the hyperoxia-challenged mouse retina.
    Natoli R; Provis J; Valter K; Stone J
    Invest Ophthalmol Vis Sci; 2008 Oct; 49(10):4561-7. PubMed ID: 18539939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient exposure of rat pups to hyperoxia at normobaric and hyperbaric pressures does not cause retinopathy of prematurity.
    Calvert JW; Zhou C; Zhang JH
    Exp Neurol; 2004 Sep; 189(1):150-61. PubMed ID: 15296845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The efficacy of delayed oxygen therapy in the treatment of experimental retinal detachment.
    Lewis GP; Talaga KC; Linberg KA; Avery RL; Fisher SK
    Am J Ophthalmol; 2004 Jun; 137(6):1085-95. PubMed ID: 15183794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuroprotection in the juvenile rat model of light-induced retinopathy: evidence suggesting a role for FGF-2 and CNTF.
    Joly S; Pernet V; Chemtob S; Di Polo A; Lachapelle P
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):2311-20. PubMed ID: 17460296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saffron supplement maintains morphology and function after exposure to damaging light in mammalian retina.
    Maccarone R; Di Marco S; Bisti S
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1254-61. PubMed ID: 18326756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatment with triamcinolone acetonide prevents decreased retinal levels of decorin in a rat model of oxygen-induced retinopathy.
    Park YJ; Kim YH; Choi WS; Chung IY; Yoo JM
    Curr Eye Res; 2010 Jul; 35(7):657-63. PubMed ID: 20597652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation by oxygen of photoreceptor death in the developing and adult C57BL/6J mouse.
    Mervin K; Stone J
    Exp Eye Res; 2002 Dec; 75(6):715-22. PubMed ID: 12470973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ability of hyperoxia to limit the effects of experimental detachment in cone-dominated retina.
    Sakai T; Lewis GP; Linberg KA; Fisher SK
    Invest Ophthalmol Vis Sci; 2001 Dec; 42(13):3264-73. PubMed ID: 11726632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA damage and repair in light-induced photoreceptor degeneration.
    Gordon WC; Casey DM; Lukiw WJ; Bazan NG
    Invest Ophthalmol Vis Sci; 2002 Nov; 43(11):3511-21. PubMed ID: 12407163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of oxygen on vasoformative cell division. Evidence that 'physiological hypoxia' is the stimulus for normal retinal vasculogenesis.
    Chan-Ling T; Gock B; Stone J
    Invest Ophthalmol Vis Sci; 1995 Jun; 36(7):1201-14. PubMed ID: 7775098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.