These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16212769)

  • 41. Spike-frequency adapting neural ensembles: beyond mean adaptation and renewal theories.
    Muller E; Buesing L; Schemmel J; Meier K
    Neural Comput; 2007 Nov; 19(11):2958-3010. PubMed ID: 17883347
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A first-order nonhomogeneous Markov model for the response of spiking neurons stimulated by small phase-continuous signals.
    Tapson J; Jin C; van Schaik A; Etienne-Cummings R
    Neural Comput; 2009 Jun; 21(6):1554-88. PubMed ID: 19191600
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dependence of neuronal correlations on filter characteristics and marginal spike train statistics.
    Tetzlaff T; Rotter S; Stark E; Abeles M; Aertsen A; Diesmann M
    Neural Comput; 2008 Sep; 20(9):2133-84. PubMed ID: 18439140
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Measure of correlation orthogonal to change in firing rate.
    Amari S
    Neural Comput; 2009 Apr; 21(4):960-72. PubMed ID: 19018699
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Parameters of the diffusion leaky integrate-and-fire neuronal model for a slowly fluctuating signal.
    Picchini U; Ditlevsen S; De Gaetano A; Lansky P
    Neural Comput; 2008 Nov; 20(11):2696-714. PubMed ID: 18533814
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mean-driven and fluctuation-driven persistent activity in recurrent networks.
    Renart A; Moreno-Bote R; Wang XJ; Parga N
    Neural Comput; 2007 Jan; 19(1):1-46. PubMed ID: 17134316
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Statistical models for neural encoding, decoding, and optimal stimulus design.
    Paninski L; Pillow J; Lewi J
    Prog Brain Res; 2007; 165():493-507. PubMed ID: 17925266
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An artificial chaotic spiking neuron inspired by spiral ganglion cell: paralleled spike encoding, theoretical analysis, and electronic circuit implementation.
    Torikai H; Nishigami T
    Neural Netw; 2009; 22(5-6):664-73. PubMed ID: 19595567
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Randomness and variability of the neuronal activity described by the Ornstein-Uhlenbeck model.
    Kostal L; Lansky P; Zucca C
    Network; 2007 Mar; 18(1):63-75. PubMed ID: 17454682
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Frequency-dependent response properties of adapting spiking neurons.
    Gigante G; Del Giudice P; Mattia M
    Math Biosci; 2007 Jun; 207(2):336-51. PubMed ID: 17367823
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Predicting spike timings of current-injected neurons.
    Tsubo Y; Kaneko T; Shinomoto S
    Neural Netw; 2004 Mar; 17(2):165-73. PubMed ID: 15036335
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computation with spikes in a winner-take-all network.
    Oster M; Douglas R; Liu SC
    Neural Comput; 2009 Sep; 21(9):2437-65. PubMed ID: 19548795
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Distortion of neural signals by spike coding.
    Goldberg DH; Andreou AG
    Neural Comput; 2007 Oct; 19(10):2797-839. PubMed ID: 17716013
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sensitive dependence of the coefficient of variation of interspike intervals on the lower boundary of membrane potential for the leaky integrate-and-fire neuron model.
    Inoue J; Doi S
    Biosystems; 2007 Jan; 87(1):49-57. PubMed ID: 16675100
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ascertaining neuron importance by information theoretical analysis in motor Brain-Machine Interfaces.
    Wang Y; Principe JC; Sanchez JC
    Neural Netw; 2009; 22(5-6):781-90. PubMed ID: 19615852
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Analog-digital simulations of full conductance-based networks of spiking neurons with spike timing dependent plasticity.
    Zou Q; Bornat Y; Saïghi S; Tomas J; Renaud S; Destexhe A
    Network; 2006 Sep; 17(3):211-33. PubMed ID: 17162612
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spiking neurons and the first passage problem.
    Sirovich L; Knight B
    Neural Comput; 2011 Jul; 23(7):1675-703. PubMed ID: 21492014
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A method for selecting the bin size of a time histogram.
    Shimazaki H; Shinomoto S
    Neural Comput; 2007 Jun; 19(6):1503-27. PubMed ID: 17444758
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Statistical significance of sequential firing patterns in multi-neuronal spike trains.
    Diekman CO; Sastry PS; Unnikrishnan KP
    J Neurosci Methods; 2009 Sep; 182(2):279-84. PubMed ID: 19559053
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Efficient computation based on stochastic spikes.
    Ernst U; Rotermund D; Pawelzik K
    Neural Comput; 2007 May; 19(5):1313-43. PubMed ID: 17381268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.