BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 16213084)

  • 1. Functional characteristics of H+ -dependent nicotinate transport in primary cultures of astrocytes from rat cerebral cortex.
    Shimada A; Nakagawa Y; Morishige H; Yamamoto A; Fujita T
    Neurosci Lett; 2006 Jan; 392(3):207-12. PubMed ID: 16213084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of monocarboxylate transporter 2 and 4 in the transport of gamma-hydroxybutyric acid in mammalian cells.
    Wang Q; Morris ME
    Drug Metab Dispos; 2007 Aug; 35(8):1393-9. PubMed ID: 17502341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport characteristics of N-acetyl-L-aspartate in rat astrocytes: involvement of sodium-coupled high-affinity carboxylate transporter NaC3/NaDC3-mediated transport system.
    Fujita T; Katsukawa H; Yodoya E; Wada M; Shimada A; Okada N; Yamamoto A; Ganapathy V
    J Neurochem; 2005 May; 93(3):706-14. PubMed ID: 15836629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional and molecular identification of sodium-coupled dicarboxylate transporters in rat primary cultured cerebrocortical astrocytes and neurons.
    Yodoya E; Wada M; Shimada A; Katsukawa H; Okada N; Yamamoto A; Ganapathy V; Fujita T
    J Neurochem; 2006 Apr; 97(1):162-73. PubMed ID: 16524379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional characterization of Zn2(+)-sensitive GABA transporter expressed in primary cultures of astrocytes from rat cerebral cortex.
    Wu Q; Wada M; Shimada A; Yamamoto A; Fujita T
    Brain Res; 2006 Feb; 1075(1):100-9. PubMed ID: 16466645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional activity of a monocarboxylate transporter, MCT1, in the human retinal pigmented epithelium cell line, ARPE-19.
    Majumdar S; Gunda S; Pal D; Mitra AK
    Mol Pharm; 2005; 2(2):109-17. PubMed ID: 15804185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular and functional characterization of an Na+-independent choline transporter in rat astrocytes.
    Inazu M; Takeda H; Matsumiya T
    J Neurochem; 2005 Sep; 94(5):1427-37. PubMed ID: 16000150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional expression of the organic cation/carnitine transporter 2 in rat astrocytes.
    Inazu M; Takeda H; Maehara K; Miyashita K; Tomoda A; Matsumiya T
    J Neurochem; 2006 Apr; 97(2):424-34. PubMed ID: 16539668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MCT1-mediated transport of L-lactic acid at the inner blood-retinal barrier: a possible route for delivery of monocarboxylic acid drugs to the retina.
    Hosoya K; Kondo T; Tomi M; Takanaga H; Ohtsuki S; Terasaki T
    Pharm Res; 2001 Dec; 18(12):1669-76. PubMed ID: 11785685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential metabolic adaptation to acute and long-term hypoxia in rat primary cortical astrocytes.
    Véga C; R Sachleben L; Gozal D; Gozal E
    J Neurochem; 2006 May; 97(3):872-83. PubMed ID: 16573648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of monocarboxylate transporters in uptake of lactic acid in HeLa cells.
    Cheeti S; Warrier BK; Lee CH
    Int J Pharm; 2006 Nov; 325(1-2):48-54. PubMed ID: 16887304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional expression and adaptive regulation of Na+ -dependent neutral amino acid transporter SNAT2/ATA2 in normal human astrocytes under amino acid starved condition.
    Tanaka K; Yamamoto A; Fujita T
    Neurosci Lett; 2005 Apr; 378(2):70-5. PubMed ID: 15774260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization of Na+-independent choline transport in primary cultures of neurons from mouse cerebral cortex.
    Fujita T; Shimada A; Okada N; Yamamoto A
    Neurosci Lett; 2006 Jan; 393(2-3):216-21. PubMed ID: 16239069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding and transport of [3H](2S,4R)- 4-methylglutamate, a new ligand for glutamate transporters, demonstrate labeling of EAAT1 in cultured murine astrocytes.
    Apricò K; Beart PM; Crawford D; O'Shea RD
    J Neurosci Res; 2004 Mar; 75(6):751-9. PubMed ID: 14994336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of monocarboxylate transport in human kidney HK-2 cells.
    Wang Q; Lu Y; Yuan M; Darling IM; Repasky EA; Morris ME
    Mol Pharm; 2006; 3(6):675-85. PubMed ID: 17140255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactate transport and transporters: general principles and functional roles in brain cells.
    Hertz L; Dienel GA
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):11-8. PubMed ID: 15586354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of (14)C-acetate uptake in cultured rat astrocytes.
    Hosoi R; Matsuyama Y; Hirose S; Koyama Y; Matsuda T; Gee A; Inoue O
    Brain Res; 2009 Feb; 1253():69-73. PubMed ID: 19073161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of PEPT2 in glycylsarcosine transport in astrocyte and glioma cultures.
    Xiang J; Chiang PP; Hu Y; Smith DE; Keep RF
    Neurosci Lett; 2006 Apr; 396(3):225-9. PubMed ID: 16364547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The putative heme transporter HCP1 is expressed in cultured astrocytes and contributes to the uptake of hemin.
    Dang TN; Bishop GM; Dringen R; Robinson SR
    Glia; 2010 Jan; 58(1):55-65. PubMed ID: 19533605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinal transfer of nicotinate by H+ -monocarboxylate transporter at the inner blood-retinal barrier.
    Tachikawa M; Murakami K; Martin PM; Hosoya K; Ganapathy V
    Microvasc Res; 2011 Nov; 82(3):385-90. PubMed ID: 21741392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.