These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 16213452)

  • 21. Interfacial water structure on a highly hydroxylated silica film.
    Anderson A; Ashurst WR
    Langmuir; 2009 Oct; 25(19):11549-54. PubMed ID: 19627074
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of alkanethiol self-assembled monolayers with various tail groups on structural and dynamic properties of water films.
    Yang AC; Weng CI
    J Chem Phys; 2008 Oct; 129(15):154710. PubMed ID: 19045221
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interfacial water at hydrophobic and hydrophilic surfaces: depletion versus adsorption.
    Janecek J; Netz RR
    Langmuir; 2007 Jul; 23(16):8417-29. PubMed ID: 17616217
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structures of water molecules at solvent/silica interfaces.
    Yang Z; Li Q; Gray MR; Chou KC
    Langmuir; 2010 Nov; 26(21):16397-400. PubMed ID: 20672815
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions.
    van Oss CJ
    J Mol Recognit; 2003; 16(4):177-90. PubMed ID: 12898668
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stability of two-dimensional tessellation ice on the hydroxylated beta-cristobalite (100) surface.
    Lu ZY; Sun ZY; Li ZS; An LJ
    J Phys Chem B; 2005 Mar; 109(12):5678-83. PubMed ID: 16851613
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adsorption behavior of lysozyme and Tween 80 at hydrophilic and hydrophobic silica-water interfaces.
    Joshi O; McGuire J
    Appl Biochem Biotechnol; 2009 Feb; 152(2):235-48. PubMed ID: 18478369
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Behaviour of water bound in bone marrow cells affected by organic solvents of different polarity.
    Turov VV; Kerus SV; Gun'ko VM
    Cryobiology; 2009 Aug; 59(1):102-12. PubMed ID: 19481072
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Why are water-hydrophobic interfaces charged?
    Kudin KN; Car R
    J Am Chem Soc; 2008 Mar; 130(12):3915-9. PubMed ID: 18311970
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogen-bond dynamics in the air-water interface.
    Liu P; Harder E; Berne BJ
    J Phys Chem B; 2005 Feb; 109(7):2949-55. PubMed ID: 16851308
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NMR studies of structure and dynamics of liquid molecules confined in extended nanospaces.
    Tsukahara T; Mizutani W; Mawatari K; Kitamori T
    J Phys Chem B; 2009 Aug; 113(31):10808-16. PubMed ID: 19603763
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of surface interactions in molecular recognition of phosphonate imprinted organosilicates and the role of water.
    Jayasundera S; Zeinali M; Miller JB; Velea LM; Gaber BP; Markowitz MA
    J Phys Chem B; 2006 Sep; 110(37):18121-5. PubMed ID: 16970423
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Silica nanoparticles at interfaces modulated by amphiphilic polymer and surfactant.
    Alves de Rezende C; Lee LT; Galembeck F
    Langmuir; 2008 Jul; 24(14):7346-53. PubMed ID: 18547078
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellular-automata models of solid-liquid interfaces.
    Cheng CK; Kier LB
    Chem Biodivers; 2007 Nov; 4(11):2555-63. PubMed ID: 18027370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ adsorption studies of a 14-amino acid leucine-lysine peptide onto hydrophobic polystyrene and hydrophilic silica surfaces using quartz crystal microbalance, atomic force microscopy, and sum frequency generation vibrational spectroscopy.
    Mermut O; Phillips DC; York RL; McCrea KR; Ward RS; Somorjai GA
    J Am Chem Soc; 2006 Mar; 128(11):3598-607. PubMed ID: 16536533
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NMR probing of structural peculiarities in ionic solutions close to critical point.
    Balevicius V; Gdaniec Z; Fuess H
    J Chem Phys; 2005 Dec; 123(22):224503. PubMed ID: 16375485
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydration and dewetting near graphite-CH(3) and graphite-COOH plates.
    Li J; Liu T; Li X; Ye L; Chen H; Fang H; Wu Z; Zhou R
    J Phys Chem B; 2005 Jul; 109(28):13639-48. PubMed ID: 16852709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature-induced water release and uptake in organic porous networks.
    Pérez-Hernández N; Falcao EH; Pérez C; Fort D; Martín JD; Eckert J
    J Phys Chem B; 2010 May; 114(17):5694-9. PubMed ID: 20380363
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clathrate formation and dissociation in vapor/water/ice/hydrate systems in SBA-15, sol-gel and CPG porous media, as probed by NMR relaxation, novel protocol NMR cryoporometry, neutron scattering and ab initio quantum-mechanical molecular dynamics simulation.
    Webber JB; Anderson R; Strange JH; Tohidi B
    Magn Reson Imaging; 2007 May; 25(4):533-6. PubMed ID: 17466781
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of water to evaluate hydrophobicity of organically-modified xerogel enzyme supports.
    Clifford JS; Legge RL
    Biotechnol Bioeng; 2005 Oct; 92(2):231-7. PubMed ID: 15988768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.