These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 16213500)
1. How can elongation factors EF-G and EF-Tu discriminate the functional state of the ribosome using the same binding site? Sergiev PV; Bogdanov AA; Dontsova OA FEBS Lett; 2005 Oct; 579(25):5439-42. PubMed ID: 16213500 [TBL] [Abstract][Full Text] [Related]
2. Cleavage of the sarcin-ricin loop of 23S rRNA differentially affects EF-G and EF-Tu binding. García-Ortega L; Alvarez-García E; Gavilanes JG; Martínez-del-Pozo A; Joseph S Nucleic Acids Res; 2010 Jul; 38(12):4108-19. PubMed ID: 20215430 [TBL] [Abstract][Full Text] [Related]
3. The identification of the determinants of the cyclic, sequential binding of elongation factors tu and g to the ribosome. Yu H; Chan YL; Wool IG J Mol Biol; 2009 Feb; 386(3):802-13. PubMed ID: 19154738 [TBL] [Abstract][Full Text] [Related]
4. The ribosomal stalk binds to translation factors IF2, EF-Tu, EF-G and RF3 via a conserved region of the L12 C-terminal domain. Helgstrand M; Mandava CS; Mulder FA; Liljas A; Sanyal S; Akke M J Mol Biol; 2007 Jan; 365(2):468-79. PubMed ID: 17070545 [TBL] [Abstract][Full Text] [Related]
5. Role of domains 4 and 5 in elongation factor G functions on the ribosome. Savelsbergh A; Matassova NB; Rodnina MV; Wintermeyer W J Mol Biol; 2000 Jul; 300(4):951-61. PubMed ID: 10891280 [TBL] [Abstract][Full Text] [Related]
6. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Moazed D; Robertson JM; Noller HF Nature; 1988 Jul; 334(6180):362-4. PubMed ID: 2455872 [TBL] [Abstract][Full Text] [Related]
7. Functional role of the sarcin-ricin loop of the 23S rRNA in the elongation cycle of protein synthesis. Shi X; Khade PK; Sanbonmatsu KY; Joseph S J Mol Biol; 2012 Jun; 419(3-4):125-38. PubMed ID: 22459262 [TBL] [Abstract][Full Text] [Related]
8. Single-molecule structural dynamics of EF-G--ribosome interaction during translocation. Wang Y; Qin H; Kudaravalli RD; Kirillov SV; Dempsey GT; Pan D; Cooperman BS; Goldman YE Biochemistry; 2007 Sep; 46(38):10767-75. PubMed ID: 17727272 [TBL] [Abstract][Full Text] [Related]
9. The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome. Vorstenbosch E; Pape T; Rodnina MV; Kraal B; Wintermeyer W EMBO J; 1996 Dec; 15(23):6766-74. PubMed ID: 8978702 [TBL] [Abstract][Full Text] [Related]
10. Synergism between the GTPase activities of EF-Tu.GTP and EF-G.GTP on empty ribosomes. Elongation factors as stimulators of the ribosomal oscillation between two conformations. Mesters JR; Potapov AP; de Graaf JM; Kraal B J Mol Biol; 1994 Oct; 242(5):644-54. PubMed ID: 7932721 [TBL] [Abstract][Full Text] [Related]
11. Interaction of helix D of elongation factor Tu with helices 4 and 5 of protein L7/12 on the ribosome. Kothe U; Wieden HJ; Mohr D; Rodnina MV J Mol Biol; 2004 Mar; 336(5):1011-21. PubMed ID: 15037065 [TBL] [Abstract][Full Text] [Related]
12. [The structural changes in the ribosome during the elongation cycle]. Kiparisov SV; Sergiev PV; Bogdanov AA; Dontsova OA Mol Biol (Mosk); 2006; 40(5):755-68. PubMed ID: 17086976 [TBL] [Abstract][Full Text] [Related]
13. Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex. Stark H; Rodnina MV; Wieden HJ; Zemlin F; Wintermeyer W; van Heel M Nat Struct Biol; 2002 Nov; 9(11):849-54. PubMed ID: 12379845 [TBL] [Abstract][Full Text] [Related]
14. EF-G-dependent GTPase on the ribosome. conformational change and fusidic acid inhibition. Seo HS; Abedin S; Kamp D; Wilson DN; Nierhaus KH; Cooperman BS Biochemistry; 2006 Feb; 45(8):2504-14. PubMed ID: 16489743 [TBL] [Abstract][Full Text] [Related]
15. GTPases mechanisms and functions of translation factors on the ribosome. Rodnina MV; Stark H; Savelsbergh A; Wieden HJ; Mohr D; Matassova NB; Peske F; Daviter T; Gualerzi CO; Wintermeyer W Biol Chem; 2000; 381(5-6):377-87. PubMed ID: 10937868 [TBL] [Abstract][Full Text] [Related]
16. Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors. Connell SR; Takemoto C; Wilson DN; Wang H; Murayama K; Terada T; Shirouzu M; Rost M; Schüler M; Giesebrecht J; Dabrowski M; Mielke T; Fucini P; Yokoyama S; Spahn CM Mol Cell; 2007 Mar; 25(5):751-64. PubMed ID: 17349960 [TBL] [Abstract][Full Text] [Related]
17. Mutagenesis of glutamine 290 in Escherichia coli and mitochondrial elongation factor Tu affects interactions with mitochondrial aminoacyl-tRNAs and GTPase activity. Hunter SE; Spremulli LL Biochemistry; 2004 Jun; 43(22):6917-27. PubMed ID: 15170329 [TBL] [Abstract][Full Text] [Related]
18. The phenotype of mutations of the base-pair C2658.G2663 that closes the tetraloop in the sarcin/ricin domain of Escherichia coli 23 S ribosomal RNA. Chan YL; Sitikov AS; Wool IG J Mol Biol; 2000 May; 298(5):795-805. PubMed ID: 10801349 [TBL] [Abstract][Full Text] [Related]
19. Identification of the elongation factor Tu binding site on 70S E. coli ribosomes by chemical crosslinking. Nag B; Johnson AE; Traut RR Indian J Biochem Biophys; 1995 Dec; 32(6):343-50. PubMed ID: 8714202 [TBL] [Abstract][Full Text] [Related]
20. [Ef-Ts elongation factor interacts with elongation factor EF-Tu on ribosomes prior to the GTP hydrolysis stage]. Bubunenko MG; Gudkov AT Mol Biol (Mosk); 1991; 25(1):172-6. PubMed ID: 1896033 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]