BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 16213518)

  • 1. Roles of double-strand breaks, nicks, and gaps in stimulating deletions of CTG.CAG repeats by intramolecular DNA repair.
    Hebert ML; Wells RD
    J Mol Biol; 2005 Nov; 353(5):961-79. PubMed ID: 16213518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA double-strand breaks induce deletion of CTG.CAG repeats in an orientation-dependent manner in Escherichia coli.
    Hebert ML; Spitz LA; Wells RD
    J Mol Biol; 2004 Feb; 336(3):655-72. PubMed ID: 15095979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replication restart: a pathway for (CTG).(CAG) repeat deletion in Escherichia coli.
    Kim SH; Pytlos MJ; Sinden RR
    Mutat Res; 2006 Mar; 595(1-2):5-22. PubMed ID: 16472829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between Escherichia coli growth and deletions of CTG.CAG triplet repeats in plasmids.
    Bowater RP; Rosche WA; Jaworski A; Sinden RR; Wells RD
    J Mol Biol; 1996 Nov; 264(1):82-96. PubMed ID: 8950269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DM2 CCTG*CAGG repeats are crossover hotspots that are more prone to expansions than the DM1 CTG*CAG repeats in Escherichia coli.
    Dere R; Wells RD
    J Mol Biol; 2006 Jun; 360(1):21-36. PubMed ID: 16753177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Length of CTG.CAG repeats determines the influence of mismatch repair on genetic instability.
    Parniewski P; Jaworski A; Wells RD; Bowater RP
    J Mol Biol; 2000 Jun; 299(4):865-74. PubMed ID: 10843843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic instabilities of (CCTG).(CAGG) and (ATTCT).(AGAAT) disease-associated repeats reveal multiple pathways for repeat deletion.
    Edwards SF; Hashem VI; Klysik EA; Sinden RR
    Mol Carcinog; 2009 Apr; 48(4):336-49. PubMed ID: 19306311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic recombination destabilizes (CTG)n.(CAG)n repeats in E. coli.
    Hashem VI; Rosche WA; Sinden RR
    Mutat Res; 2004 Oct; 554(1-2):95-109. PubMed ID: 15450408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of transcription reveals a new mechanism of triplet repeat instability in Escherichia coli.
    Schumacher S; Pinet I; Bichara M
    J Mol Biol; 2001 Mar; 307(1):39-49. PubMed ID: 11243802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromosomal model for analysis of a long CTG/CAG tract stability in wild-type Escherichia coli and its nucleotide excision repair mutants.
    Szwarocka ST; Staczek P; Parniewski P
    Can J Microbiol; 2007 Jul; 53(7):860-8. PubMed ID: 17898841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New mammalian cellular systems to study mutations introduced at the break site by non-homologous end-joining.
    Rebuzzini P; Khoriauli L; Azzalin CM; Magnani E; Mondello C; Giulotto E
    DNA Repair (Amst); 2005 May; 4(5):546-55. PubMed ID: 15811627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SOS repair and DNA supercoiling influence the genetic stability of DNA triplet repeats in Escherichia coli.
    Majchrzak M; Bowater RP; Staczek P; Parniewski P
    J Mol Biol; 2006 Dec; 364(4):612-24. PubMed ID: 17028021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromosomal fragmentation in dUTPase-deficient mutants of Escherichia coli and its recombinational repair.
    Kouzminova EA; Kuzminov A
    Mol Microbiol; 2004 Mar; 51(5):1279-95. PubMed ID: 14982624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial DNA repair genes and their eukaryotic homologues: 5. The role of recombination in DNA repair and genome stability.
    Nowosielska A
    Acta Biochim Pol; 2007; 54(3):483-94. PubMed ID: 17893749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualization of DNA double-strand break repair in live bacteria reveals dynamic recruitment of Bacillus subtilis RecF, RecO and RecN proteins to distinct sites on the nucleoids.
    Kidane D; Sanchez H; Alonso JC; Graumann PL
    Mol Microbiol; 2004 Jun; 52(6):1627-39. PubMed ID: 15186413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expansion of CTG repeats from human disease genes is dependent upon replication mechanisms in Escherichia coli: the effect of long patch mismatch repair revisited.
    Schumacher S; Fuchs RP; Bichara M
    J Mol Biol; 1998 Jun; 279(5):1101-10. PubMed ID: 9642087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RecN protein and transcription factor DksA combine to promote faithful recombinational repair of DNA double-strand breaks.
    Meddows TR; Savory AP; Grove JI; Moore T; Lloyd RG
    Mol Microbiol; 2005 Jul; 57(1):97-110. PubMed ID: 15948952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inversion/dimerization of plasmids mediated by inverted repeats.
    Lyu YL; Lin CT; Liu LF
    J Mol Biol; 1999 Jan; 285(4):1485-501. PubMed ID: 9917391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double-strand breaks in the myotonic dystrophy type 1 and the fragile X syndrome triplet repeat sequences induce different types of mutations in DNA flanking sequences in Escherichia coli.
    Kosmider B; Wells RD
    Nucleic Acids Res; 2006; 34(19):5369-82. PubMed ID: 17012280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic assays for measuring rates of (CAG).(CTG) repeat instability in Escherichia coli.
    Hashem VI; Rosche WA; Sinden RR
    Mutat Res; 2002 May; 502(1-2):25-37. PubMed ID: 11996969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.