These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 16213525)
1. Androgen receptor binding sites identified by a GREF_GATA model. Masuda K; Werner T; Maheshwari S; Frisch M; Oh S; Petrovics G; May K; Srikantan V; Srivastava S; Dobi A J Mol Biol; 2005 Nov; 353(4):763-71. PubMed ID: 16213525 [TBL] [Abstract][Full Text] [Related]
2. PMEPA1, an androgen-regulated NEDD4-binding protein, exhibits cell growth inhibitory function and decreased expression during prostate cancer progression. Xu LL; Shi Y; Petrovics G; Sun C; Makarem M; Zhang W; Sesterhenn IA; McLeod DG; Sun L; Moul JW; Srivastava S Cancer Res; 2003 Aug; 63(15):4299-304. PubMed ID: 12907594 [TBL] [Abstract][Full Text] [Related]
3. Identification and functional analysis of consensus androgen response elements in human prostate cancer cells. Horie-Inoue K; Bono H; Okazaki Y; Inoue S Biochem Biophys Res Commun; 2004 Dec; 325(4):1312-7. PubMed ID: 15555570 [TBL] [Abstract][Full Text] [Related]
4. FOXP1 is an androgen-responsive transcription factor that negatively regulates androgen receptor signaling in prostate cancer cells. Takayama K; Horie-Inoue K; Ikeda K; Urano T; Murakami K; Hayashizaki Y; Ouchi Y; Inoue S Biochem Biophys Res Commun; 2008 Sep; 374(2):388-93. PubMed ID: 18640093 [TBL] [Abstract][Full Text] [Related]
5. Amyloid precursor protein is a primary androgen target gene that promotes prostate cancer growth. Takayama K; Tsutsumi S; Suzuki T; Horie-Inoue K; Ikeda K; Kaneshiro K; Fujimura T; Kumagai J; Urano T; Sakaki Y; Shirahige K; Sasano H; Takahashi S; Kitamura T; Ouchi Y; Aburatani H; Inoue S Cancer Res; 2009 Jan; 69(1):137-42. PubMed ID: 19117996 [TBL] [Abstract][Full Text] [Related]
7. A bioinformatics-based functional analysis shows that the specifically androgen-regulated gene SARG contains an active direct repeat androgen response element in the first intron. Steketee K; Ziel-van der Made AC; van der Korput HA; Houtsmuller AB; Trapman J J Mol Endocrinol; 2004 Oct; 33(2):477-91. PubMed ID: 15525603 [TBL] [Abstract][Full Text] [Related]
8. Integrating genomic data to predict transcription factor binding. Holloway DT; Kon M; DeLisi C Genome Inform; 2005; 16(1):83-94. PubMed ID: 16362910 [TBL] [Abstract][Full Text] [Related]
9. Specific GATA-binding elements in the GnRH promoter are required for gene expression pulse activity: role of GATA-4 and GATA-5 in this intermittent process. Leclerc GM; Bose SK; Boockfor FR Neuroendocrinology; 2008; 88(1):1-16. PubMed ID: 18259093 [TBL] [Abstract][Full Text] [Related]
10. Novel steroid receptor phyto-modulator compound a inhibits growth and survival of prostate cancer cells. Yemelyanov A; Czwornog J; Gera L; Joshi S; Chatterton RT; Budunova I Cancer Res; 2008 Jun; 68(12):4763-73. PubMed ID: 18559523 [TBL] [Abstract][Full Text] [Related]
11. Foxa1 and Foxa2 interact with the androgen receptor to regulate prostate and epididymal genes differentially. Yu X; Gupta A; Wang Y; Suzuki K; Mirosevich J; Orgebin-Crist MC; Matusik RJ Ann N Y Acad Sci; 2005 Dec; 1061():77-93. PubMed ID: 16467259 [TBL] [Abstract][Full Text] [Related]
12. Androgen receptor-dependent regulation of Bcl-xL expression: Implication in prostate cancer progression. Sun A; Tang J; Hong Y; Song J; Terranova PF; Thrasher JB; Svojanovsky S; Wang HG; Li B Prostate; 2008 Mar; 68(4):453-61. PubMed ID: 18196538 [TBL] [Abstract][Full Text] [Related]
14. PC3, but not DU145, human prostate cancer cells retain the coregulators required for tumor suppressor ability of androgen receptor. Litvinov IV; Antony L; Dalrymple SL; Becker R; Cheng L; Isaacs JT Prostate; 2006 Sep; 66(12):1329-38. PubMed ID: 16835890 [TBL] [Abstract][Full Text] [Related]
15. A role for GATA-2 in transition to an aggressive phenotype in prostate cancer through modulation of key androgen-regulated genes. Böhm M; Locke WJ; Sutherland RL; Kench JG; Henshall SM Oncogene; 2009 Oct; 28(43):3847-56. PubMed ID: 19684615 [TBL] [Abstract][Full Text] [Related]
16. Convergence of protein kinase C and JAK-STAT signaling on transcription factor GATA-4. Wang J; Paradis P; Aries A; Komati H; Lefebvre C; Wang H; Nemer M Mol Cell Biol; 2005 Nov; 25(22):9829-44. PubMed ID: 16260600 [TBL] [Abstract][Full Text] [Related]
17. Evolution of the androgen receptor pathway during progression of prostate cancer. Hendriksen PJ; Dits NF; Kokame K; Veldhoven A; van Weerden WM; Bangma CH; Trapman J; Jenster G Cancer Res; 2006 May; 66(10):5012-20. PubMed ID: 16707422 [TBL] [Abstract][Full Text] [Related]
18. Identification of ETS-like transcription factor 4 as a novel androgen receptor target in prostate cancer cells. Makkonen H; Jääskeläinen T; Pitkänen-Arsiola T; Rytinki M; Waltering KK; Mättö M; Visakorpi T; Palvimo JJ Oncogene; 2008 Aug; 27(36):4865-76. PubMed ID: 18469865 [TBL] [Abstract][Full Text] [Related]
19. c-Jun has multiple enhancing activities in the novel cross talk between the androgen receptor and Ets variant gene 1 in prostate cancer. Cai C; Hsieh CL; Shemshedini L Mol Cancer Res; 2007 Jul; 5(7):725-35. PubMed ID: 17634427 [TBL] [Abstract][Full Text] [Related]
20. Transcriptional regulation of the TGF-beta1 promoter by androgen receptor. Qi W; Gao S; Wang Z Biochem J; 2008 Dec; 416(3):453-62. PubMed ID: 18651839 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]