These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 16213538)
1. Studies of a novel sensor for assessing the spatial distribution of cavitation activity within ultrasonic cleaning vessels. Zeqiri B; Hodnett M; Carroll AJ Ultrasonics; 2006 Jan; 44(1):73-82. PubMed ID: 16213538 [TBL] [Abstract][Full Text] [Related]
2. High-frequency acoustic emissions generated by a 20 kHz sonochemical horn processor detected using a novel broadband acoustic sensor: a preliminary study. Hodnett M; Chow R; Zeqiri B Ultrason Sonochem; 2004 Sep; 11(6):441-54. PubMed ID: 15302033 [TBL] [Abstract][Full Text] [Related]
3. A novel sensor for monitoring acoustic cavitation. Part II: Prototype performance evaluation. Zeqiri B; Lee ND; Hodnett M; Gélat PN IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Oct; 50(10):1351-62. PubMed ID: 14609075 [TBL] [Abstract][Full Text] [Related]
4. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device. Petosić A; Svilar D; Ivancević B Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368 [TBL] [Abstract][Full Text] [Related]
5. A novel sensor for monitoring acoustic cavitation. Part I: Concept, theory, and prototype development. Zeqiri B; Gélat PN; Hodnett M; Lee ND IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Oct; 50(10):1342-50. PubMed ID: 14609074 [TBL] [Abstract][Full Text] [Related]
6. Towards a reference ultrasonic cavitation vessel. Part 1: preliminary investigation of the acoustic field distribution in a 25 kHz cylindrical cell. Hodnett M; Choi MJ; Zeqiri B Ultrason Sonochem; 2007 Jan; 14(1):29-40. PubMed ID: 16549381 [TBL] [Abstract][Full Text] [Related]
7. An erosion sensor based on a quartz crystal microbalance for quantitative determination of the cleaning efficiency in an ultrasonic vessel. Jüschke M; Koch C; Dreyer T Ultrason Sonochem; 2014 Sep; 21(5):1900-6. PubMed ID: 24838113 [TBL] [Abstract][Full Text] [Related]
8. Investigation of spatial distribution of sound field parameters in ultrasound cleaning baths under the influence of cavitation. Jenderka KV; Koch C Ultrasonics; 2006 Dec; 44 Suppl 1():e401-6. PubMed ID: 16781752 [TBL] [Abstract][Full Text] [Related]
9. An objective comparison of commercially-available cavitation meters. Sarno D; Hodnett M; Wang L; Zeqiri B Ultrason Sonochem; 2017 Jan; 34():354-364. PubMed ID: 27773256 [TBL] [Abstract][Full Text] [Related]
10. Spatial distribution of sonoluminescence and sonochemiluminescence generated by cavitation bubbles in 1.2 MHz focused ultrasound field. Cao H; Wan M; Qiao Y; Zhang S; Li R Ultrason Sonochem; 2012 Mar; 19(2):257-63. PubMed ID: 21862375 [TBL] [Abstract][Full Text] [Related]
11. Model processes and cavitation indicators for a quantitative description of an ultrasonic cleaning vessel: Part I: experimental results. Jüschke M; Koch C Ultrason Sonochem; 2012 Jul; 19(4):787-95. PubMed ID: 22261472 [TBL] [Abstract][Full Text] [Related]
12. Spatial distribution of acoustic cavitation bubbles at different ultrasound frequencies. Ashokkumar M; Lee J; Iida Y; Yasui K; Kozuka T; Tuziuti T; Towata A Chemphyschem; 2010 Jun; 11(8):1680-4. PubMed ID: 20301178 [TBL] [Abstract][Full Text] [Related]
13. Toward a reference ultrasonic cavitation vessel: Part 2--investigating the spatial variation and acoustic pressure threshold of inertial cavitation in a 25 kHz ultrasound field. Hodnett M; Zeqiri B IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1809-22. PubMed ID: 18986923 [TBL] [Abstract][Full Text] [Related]
14. Spatial-temporal dynamics of cavitation bubble clouds in 1.2 MHz focused ultrasound field. Chen H; Li X; Wan M Ultrason Sonochem; 2006 Sep; 13(6):480-6. PubMed ID: 16571378 [TBL] [Abstract][Full Text] [Related]
15. Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation. Liu HL; Hsieh CM Ultrason Sonochem; 2009 Mar; 16(3):431-8. PubMed ID: 18951828 [TBL] [Abstract][Full Text] [Related]
16. Towards an understanding and control of cavitation activity in 1 MHz ultrasound fields. Hauptmann M; Struyf H; Mertens P; Heyns M; De Gendt S; Glorieux C; Brems S Ultrason Sonochem; 2013 Jan; 20(1):77-88. PubMed ID: 22705075 [TBL] [Abstract][Full Text] [Related]
17. Time-resolved monitoring of cavitation activity in megasonic cleaning systems. Hauptmann M; Brems S; Struyf H; Mertens P; Heyns M; De Gendt S; Glorieux C Rev Sci Instrum; 2012 Mar; 83(3):034904. PubMed ID: 22462949 [TBL] [Abstract][Full Text] [Related]
18. Low-intensity ultrasound induced cavitation and streaming in oxygen-supersaturated water: Role of cavitation bubbles as physical cleaning agents. Yamashita T; Ando K Ultrason Sonochem; 2019 Apr; 52():268-279. PubMed ID: 30573434 [TBL] [Abstract][Full Text] [Related]
19. High-speed observation of acoustic cavitation erosion in multibubble systems. Krefting D; Mettin R; Lauterborn W Ultrason Sonochem; 2004 May; 11(3-4):119-23. PubMed ID: 15081967 [TBL] [Abstract][Full Text] [Related]
20. Ultrasonic system for continuous washing of textiles in liquid layers. Gallego-Juarez JA; Riera E; Acosta V; Rodríguez G; Blanco A Ultrason Sonochem; 2010 Jan; 17(1):234-8. PubMed ID: 19574081 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]