These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 16213538)
21. Methods for measuring acoustic power of an ultrasonic neurosurgical device. Petosić A; Ivancević B; Svilar D; Stimac T; Paladino J; Oresković D; Jurjević I; Klarica M Coll Antropol; 2011 Jan; 35 Suppl 1():107-13. PubMed ID: 21648319 [TBL] [Abstract][Full Text] [Related]
22. Precise spatial control of cavitation erosion in a vessel phantom by using an ultrasonic standing wave. Shi A; Huang P; Guo S; Zhao L; Jia Y; Zong Y; Wan M Ultrason Sonochem; 2016 Jul; 31():163-72. PubMed ID: 26964937 [TBL] [Abstract][Full Text] [Related]
23. Ray-based acoustic localization of cavitation in a highly reverberant environment. Chang NA; Dowling DR J Acoust Soc Am; 2009 May; 125(5):3088-100. PubMed ID: 19425652 [TBL] [Abstract][Full Text] [Related]
24. Enhancement of cavitation activity and particle removal with pulsed high frequency ultrasound and supersaturation. Hauptmann M; Frederickx F; Struyf H; Mertens P; Heyns M; De Gendt S; Glorieux C; Brems S Ultrason Sonochem; 2013 Jan; 20(1):69-76. PubMed ID: 22682476 [TBL] [Abstract][Full Text] [Related]
25. Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications. Yusof NS; Babgi B; Alghamdi Y; Aksu M; Madhavan J; Ashokkumar M Ultrason Sonochem; 2016 Mar; 29():568-76. PubMed ID: 26142078 [TBL] [Abstract][Full Text] [Related]
26. Nonlinear ultrasonic waves in bubbly liquids with nonhomogeneous bubble distribution: Numerical experiments. Vanhille C; Campos-Pozuelo C Ultrason Sonochem; 2009 Jun; 16(5):669-85. PubMed ID: 19171496 [TBL] [Abstract][Full Text] [Related]
27. Ultrasound field distribution and ultrasonic oxidation desulfurization efficiency. Liu L; Wen J; Yang Y; Tan W Ultrason Sonochem; 2013 Mar; 20(2):696-702. PubMed ID: 23168078 [TBL] [Abstract][Full Text] [Related]
28. The detection and control of stable and transient acoustic cavitation bubbles. Ashokkumar M; Lee J; Iida Y; Yasui K; Kozuka T; Tuziuti T; Towata A Phys Chem Chem Phys; 2009 Nov; 11(43):10118-21. PubMed ID: 19865767 [TBL] [Abstract][Full Text] [Related]
29. Oscillating bubble concentration and its size distribution using acoustic emission spectra. Avvaru B; Pandit AB Ultrason Sonochem; 2009 Jan; 16(1):105-15. PubMed ID: 18752981 [TBL] [Abstract][Full Text] [Related]
30. Modeling cavitation in a rapidly changing pressure field - application to a small ultrasonic horn. Žnidarčič A; Mettin R; Dular M Ultrason Sonochem; 2015 Jan; 22():482-92. PubMed ID: 24889548 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of a novel solid-state method for determining the acoustic power generated by physiotherapy ultrasound transducers. Zeqiri B; Barrie J Ultrasound Med Biol; 2008 Sep; 34(9):1513-27. PubMed ID: 18440695 [TBL] [Abstract][Full Text] [Related]
32. Application of analyzer based X-ray imaging technique for detection of ultrasound induced cavitation bubbles from a physical therapy unit. Izadifar Z; Belev G; Babyn P; Chapman D Biomed Eng Online; 2015 Oct; 14():91. PubMed ID: 26481447 [TBL] [Abstract][Full Text] [Related]
33. Cavitation occurrence around ultrasonic dental scalers. Felver B; King DC; Lea SC; Price GJ; Damien Walmsley A Ultrason Sonochem; 2009 Jun; 16(5):692-7. PubMed ID: 19119051 [TBL] [Abstract][Full Text] [Related]
34. Cloud cavitation control for lithotripsy using high intensity focused ultrasound. Ikeda T; Yoshizawa S; Tosaki M; Allen JS; Takagi S; Ohta N; Kitamura T; Matsumoto Y Ultrasound Med Biol; 2006 Sep; 32(9):1383-97. PubMed ID: 16965979 [TBL] [Abstract][Full Text] [Related]
35. Generation and control of acoustic cavitation structure. Bai L; Xu W; Deng J; Li C; Xu D; Gao Y Ultrason Sonochem; 2014 Sep; 21(5):1696-706. PubMed ID: 24650609 [TBL] [Abstract][Full Text] [Related]
36. Observations of water cavitation intensity under practical ultrasonic cleaning conditions. Niemczewski B Ultrason Sonochem; 2007 Jan; 14(1):13-8. PubMed ID: 16455284 [TBL] [Abstract][Full Text] [Related]
37. Matching a transducer to water at cavitation: acoustic horn design principles. Peshkovsky SL; Peshkovsky AS Ultrason Sonochem; 2007 Mar; 14(3):314-22. PubMed ID: 16905351 [TBL] [Abstract][Full Text] [Related]
38. Acoustic emission from cavitating solutions: implications for the mechanisms of sonochemical reactions. Price GJ; Ashokkumar M; Hodnett M; Zequiri B; Grieser F J Phys Chem B; 2005 Sep; 109(38):17799-801. PubMed ID: 16853282 [TBL] [Abstract][Full Text] [Related]
39. Ultrasonic transducers working in the air with the continuous wave within the 50-500 kHz frequency range. Gudra T; Opielinski KJ Ultrasonics; 2004 Apr; 42(1-9):453-8. PubMed ID: 15047328 [TBL] [Abstract][Full Text] [Related]
40. A predictive model obtained by identification for the ultrasonic "equivalent" flow velocity at surface vicinity. Mandroyan A; Hihn JY; Doche ML; Pothier JM Ultrason Sonochem; 2010 Aug; 17(6):965-77. PubMed ID: 20071207 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]