BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 16213547)

  • 1. Experimental study on the thermal oxidation of 2-chlorophenol in air over the temperature range 450-900 degrees C.
    Briois C; Visez N; Baillet C; Sawerysyn JP
    Chemosphere; 2006 Mar; 62(11):1806-16. PubMed ID: 16213547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of dioxin formation from the high-temperature oxidation of 2-chlorophenol.
    Evans CS; Dellinger B
    Environ Sci Technol; 2005 Jan; 39(1):122-7. PubMed ID: 15667085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal degradation of 2-chlorophenol promoted by CuCl2 or CuCl: formation and destruction of PCDD/Fs.
    Visez N; Sawerysyn JP
    Chemosphere; 2007 Apr; 67(9):S144-9. PubMed ID: 17223176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment of 2-chlorophenol aqueous solutions by wet oxidation.
    Poulopoulos SG; Korologos CA; Boulamanti A; Philippopoulos CJ
    Water Res; 2007 Mar; 41(6):1263-8. PubMed ID: 17292438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elimination of phenol and aromatic compounds by zero valent iron and EDTA at low temperature and atmospheric pressure.
    Sanchez I; Stüber F; Font J; Fortuny A; Fabregat A; Bengoa C
    Chemosphere; 2007 Jun; 68(2):338-44. PubMed ID: 17300830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Destruction of chlorobenzene and carbon tetrachloride in a two-stage molten salt oxidation reactor system.
    Yang HC; Cho YJ; Eun HC; Kim EH
    Chemosphere; 2008 Aug; 73(1 Suppl):S311-5. PubMed ID: 18501405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and modeling study of the effect of CH(4) and pulverized coal on selective non-catalytic reduction process.
    Zhang Y; Cai N; Yang J; Xu B
    Chemosphere; 2008 Oct; 73(5):650-6. PubMed ID: 18727998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NO removal by reducing agents and additives in the selective non-catalytic reduction (SNCR) process.
    Bae SW; Roh SA; Kim SD
    Chemosphere; 2006 Sep; 65(1):170-5. PubMed ID: 16581102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic wet air oxidation of chlorophenols over supported ruthenium catalysts.
    Li N; Descorme C; Besson M
    J Hazard Mater; 2007 Jul; 146(3):602-9. PubMed ID: 17513043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrolysis and thermal-oxidation characterization of organic carbon and black carbon aerosols.
    Jiang M; Wu Y; Lin G; Xu L; Chen Z; Fu F
    Sci Total Environ; 2011 Sep; 409(20):4449-55. PubMed ID: 21824643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of operational conditions on sludge degradation and organic acids formation in low-critical wet air oxidation.
    Chung J; Lee M; Ahn J; Bae W; Lee YW; Shim H
    J Hazard Mater; 2009 Feb; 162(1):10-6. PubMed ID: 18579292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal behavior characteristics of Adhesive residue.
    Jiang X; Li C; Chi Y; Yan J
    Waste Manag; 2009 Nov; 29(11):2824-9. PubMed ID: 19660928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experiment and mechanism investigation on advanced reburning for NO(x) reduction: influence of CO and temperature.
    Wang ZH; Zhou JH; Zhang YW; Lu ZM; Fan JR; Cen KF
    J Zhejiang Univ Sci B; 2005 Mar; 6(3):187-94. PubMed ID: 15682503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave-enhanced catalytic degradation of 4-chlorophenol over nickel oxides under low temperature.
    Lai TL; Liu JY; Yong KF; Shu YY; Wang CB
    J Hazard Mater; 2008 Sep; 157(2-3):496-502. PubMed ID: 18313217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of PCDD/Fs formation because of the presence of DEHP during the model slow combustion of 2,4,6-trichlorophenol.
    Kishi T; Shinkura T; Suzuki S; Kawakami T; Takeda K; Onodera S
    Chemosphere; 2010 Mar; 78(10):1207-12. PubMed ID: 20080281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cometabolic biodegradation of 4-chlorophenol by sequencing batch reactors at different temperatures.
    Monsalvo VM; Mohedano AF; Casas JA; Rodríguez JJ
    Bioresour Technol; 2009 Oct; 100(20):4572-8. PubMed ID: 19450978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic behavior of oxygenated combustion by-products.
    de Joannon M; Ciajolo A; Ragucci R; Tregrossi A; Cavaliere A
    Chemosphere; 2003 Jun; 51(10):1071-7. PubMed ID: 12718972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combustion and inorganic bromine emission of waste printed circuit boards in a high temperature furnace.
    Ni M; Xiao H; Chi Y; Yan J; Buekens A; Jin Y; Lu S
    Waste Manag; 2012 Mar; 32(3):568-74. PubMed ID: 22137319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influences of chlorine content on emission of HCl and organic compounds in waste incineration using fluidized beds.
    Wey MY; Liu KY; Yu WJ; Lin CL; Chang FY
    Waste Manag; 2008; 28(2):406-15. PubMed ID: 17320369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts.
    Tu Y; Xiong Y; Tian S; Kong L; Descorme C
    J Hazard Mater; 2014 Jul; 276():88-96. PubMed ID: 24862472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.