BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 16213676)

  • 1. Phage release from biofilm and planktonic Staphylococcus aureus cells.
    Resch A; Fehrenbacher B; Eisele K; Schaller M; Götz F
    FEMS Microbiol Lett; 2005 Nov; 252(1):89-96. PubMed ID: 16213676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Susceptibility of Staphylococcus epidermidis planktonic cells and biofilms to the lytic action of staphylococcus bacteriophage K.
    Cerca N; Oliveira R; Azeredo J
    Lett Appl Microbiol; 2007 Sep; 45(3):313-7. PubMed ID: 17718845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacteriophage reduces biofilm of Staphylococcus aureus ex vivo isolates from chronic rhinosinusitis patients.
    Drilling A; Morales S; Jardeleza C; Vreugde S; Speck P; Wormald PJ
    Am J Rhinol Allergy; 2014; 28(1):3-11. PubMed ID: 24717868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibacterial Effects of Phage Lysin LysGH15 on Planktonic Cells and Biofilms of Diverse Staphylococci.
    Zhang Y; Cheng M; Zhang H; Dai J; Guo Z; Li X; Ji Y; Cai R; Xi H; Wang X; Xue Y; Sun C; Feng X; Lei L; Han W; Gu J
    Appl Environ Microbiol; 2018 Aug; 84(15):. PubMed ID: 29776929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibacterial and biofilm removal activity of a podoviridae Staphylococcus aureus bacteriophage SAP-2 and a derived recombinant cell-wall-degrading enzyme.
    Son JS; Lee SJ; Jun SY; Yoon SJ; Kang SH; Paik HR; Kang JO; Choi YJ
    Appl Microbiol Biotechnol; 2010 May; 86(5):1439-49. PubMed ID: 20013118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in biofilm and planktonic cell mediated reduction of metalloid oxyanions.
    Harrison JJ; Ceri H; Stremick C; Turner RJ
    FEMS Microbiol Lett; 2004 Jun; 235(2):357-62. PubMed ID: 15183885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bovine whey proteins inhibit the interaction of Staphylococcus aureus and bacteriophage K.
    Gill JJ; Sabour PM; Leslie KE; Griffiths MW
    J Appl Microbiol; 2006 Aug; 101(2):377-86. PubMed ID: 16882145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phage control of dual species biofilms of Pseudomonas fluorescens and Staphylococcus lentus.
    Sillankorva S; Neubauer P; Azeredo J
    Biofouling; 2010 Jul; 26(5):567-75. PubMed ID: 20544433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro multispecies Lubbock chronic wound biofilm model.
    Sun Y; Dowd SE; Smith E; Rhoads DD; Wolcott RD
    Wound Repair Regen; 2008; 16(6):805-13. PubMed ID: 19128252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Role of phage in the transfer of plasmids in mixed cultures of Staphylococcus aureus (author's transl)].
    Witte W
    Zentralbl Bakteriol A; 1981; 249(2):195-202. PubMed ID: 6455889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of two anti-staphylococcal bacteriophages specific for pathogenic Staphylococcus aureus associated with bovine infections.
    O'Flaherty S; Ross RP; Flynn J; Meaney WJ; Fitzgerald GF; Coffey A
    Lett Appl Microbiol; 2005; 41(6):482-6. PubMed ID: 16305674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of induced Staphylococcus aureus bacteriophage SAP-26 and its anti-biofilm activity with rifampicin.
    Rahman M; Kim S; Kim SM; Seol SY; Kim J
    Biofouling; 2011 Nov; 27(10):1087-93. PubMed ID: 22050201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm formation.
    Alves DR; Gaudion A; Bean JE; Perez Esteban P; Arnot TC; Harper DR; Kot W; Hansen LH; Enright MC; Jenkins AT
    Appl Environ Microbiol; 2014 Nov; 80(21):6694-703. PubMed ID: 25149517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased tolerance of Staphylococcus aureus to vancomycin in viscous media.
    Kostenko V; Ceri H; Martinuzzi RJ
    FEMS Immunol Med Microbiol; 2007 Nov; 51(2):277-88. PubMed ID: 17727657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic analyses of two novel biofilm-degrading methicillin-resistant Staphylococcus aureus phages.
    Dakheel KH; Rahim RA; Neela VK; Al-Obaidi JR; Hun TG; Isa MNM; Yusoff K
    BMC Microbiol; 2019 May; 19(1):114. PubMed ID: 31138130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of newly isolated phages for control of Pseudomonas aeruginosa PAO1 and ATCC 10145 biofilms.
    Pires D; Sillankorva S; Faustino A; Azeredo J
    Res Microbiol; 2011 Oct; 162(8):798-806. PubMed ID: 21782936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interleukin-1beta-induced growth enhancement of Staphylococcus aureus occurs in biofilm but not planktonic cultures.
    McLaughlin RA; Hoogewerf AJ
    Microb Pathog; 2006; 41(2-3):67-79. PubMed ID: 16769197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of a novel Staphylococcus aureus bacteriophage, phiMR25, and its therapeutic potential.
    Hoshiba H; Uchiyama J; Kato S; Ujihara T; Muraoka A; Daibata M; Wakiguchi H; Matsuzaki S
    Arch Virol; 2010 Apr; 155(4):545-52. PubMed ID: 20224894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a New Staphylococcus aureus Kayvirus Harboring a Lysin Active against Biofilms.
    Melo LDR; Brandão A; Akturk E; Santos SB; Azeredo J
    Viruses; 2018 Apr; 10(4):. PubMed ID: 29642449
    [No Abstract]   [Full Text] [Related]  

  • 20. Bacteriophage ISP eliminates Staphylococcus aureus in planktonic phase, but not in the various stages of the biofilm cycle.
    Verheul M; Mulder AA; van Dun SCJ; Merabishvili M; Nelissen RGHH; de Boer MGJ; Pijls BG; Nibbering PH
    Sci Rep; 2024 Jun; 14(1):14374. PubMed ID: 38909125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.