These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 16214481)

  • 1. Effect of oscillating fluid shear on solute transport in cortical bone.
    Schmidt SM; McCready MJ; Ostafin AE
    J Biomech; 2005 Dec; 38(12):2337-43. PubMed ID: 16214481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of vascular porosity on fluid flow and nutrient transport in loaded cortical bone.
    Goulet GC; Hamilton N; Cooper D; Coombe D; Tran D; Martinuzzi R; Zernicke RF
    J Biomech; 2008 Jul; 41(10):2169-75. PubMed ID: 18533159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study.
    Rémond A; Naïli S; Lemaire T
    Biomech Model Mechanobiol; 2008 Dec; 7(6):487-95. PubMed ID: 17990014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of the influence of fibrous pericellular matrix in the cortical interstitial fluid movement with hydroelectrochemical effects.
    Lemaire T; Naïli S; Rémond A
    J Biomech Eng; 2008 Feb; 130(1):011001. PubMed ID: 18298177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between the interstitial fluid and the extracellular matrix in confined indentation.
    Lu Y; Wang W
    J Biomech Eng; 2008 Aug; 130(4):041011. PubMed ID: 18601453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poroelastic evaluation of fluid movement through the lacunocanalicular system.
    Goulet GC; Coombe D; Martinuzzi RJ; Zernicke RF
    Ann Biomed Eng; 2009 Jul; 37(7):1390-402. PubMed ID: 19415492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted mechanical properties for optimal fluid motion inside artificial bone substitutes.
    Blecha LD; Rakotomanana L; Razafimahery F; Terrier A; Pioletti DP
    J Orthop Res; 2009 Aug; 27(8):1082-7. PubMed ID: 19180634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fatigue microcrack alters fluid velocities in a computational model of interstitial fluid flow in cortical bone.
    Galley SA; Michalek DJ; Donahue SW
    J Biomech; 2006; 39(11):2026-33. PubMed ID: 16115637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical interaction between cells and fluid for bone tissue engineering scaffold: modulation of the interfacial shear stress.
    Blecha LD; Rakotomanana L; Razafimahery F; Terrier A; Pioletti DP
    J Biomech; 2010 Mar; 43(5):933-7. PubMed ID: 20004397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of lacunocanalicular architecture on hydraulic conductance in bone tissue: implications for bone health and evolution.
    Mishra S; Knothe Tate ML
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Aug; 273(2):752-62. PubMed ID: 12845711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical poroelasticity: movement of interstitial fluid between porosity levels in bones.
    Cowin SC; Gailani G; Benalla M
    Philos Trans A Math Phys Eng Sci; 2009 Sep; 367(1902):3401-44. PubMed ID: 19657006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of cortical canal architecture on lacunocanalicular pore pressure and fluid flow.
    Goulet GC; Cooper DM; Coombe D; Zernicke RF
    Comput Methods Biomech Biomed Engin; 2008 Aug; 11(4):379-87. PubMed ID: 18568832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Idealization of pericellular fluid space geometry and dimension results in a profound underprediction of nano-microscale stresses imparted by fluid drag on osteocytes.
    Anderson EJ; Knothe Tate ML
    J Biomech; 2008; 41(8):1736-46. PubMed ID: 18482728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of interstitial bone microcracks on strain-induced fluid flow.
    Nguyen VH; Lemaire T; Naili S
    Biomech Model Mechanobiol; 2011 Dec; 10(6):963-72. PubMed ID: 21253808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of potential softness on the transport coefficients of simple fluids.
    Heyes DM; Brańka AC
    J Chem Phys; 2005 Jun; 122(23):234504. PubMed ID: 16008459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of extracellular fiber architecture on cell membrane shear stress in a 3D fibrous matrix.
    Pedersen JA; Boschetti F; Swartz MA
    J Biomech; 2007; 40(7):1484-92. PubMed ID: 16987520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of porosity on effective diagonal stiffness coefficients (cii) and elastic anisotropy of cortical bone at 1 MHz: a finite-difference time domain study.
    Baron C; Talmant M; Laugier P
    J Acoust Soc Am; 2007 Sep; 122(3):1810. PubMed ID: 17927440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contributions of fluid convection and electrical migration to transport in cartilage: relevance to loading.
    Garcia AM; Frank EH; Grimshaw PE; Grodzinsky AJ
    Arch Biochem Biophys; 1996 Sep; 333(2):317-25. PubMed ID: 8809069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of flow shear stress and mass transport on the construction of a large-scale tissue-engineered bone in a perfusion bioreactor.
    Li D; Tang T; Lu J; Dai K
    Tissue Eng Part A; 2009 Oct; 15(10):2773-83. PubMed ID: 19226211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of avian bone response to mechanical loading-Part one: Distribution of bone fluid shear stress induced by bending and axial loading.
    Mi LY; Fritton SP; Basu M; Cowin SC
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):118-31. PubMed ID: 16254728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.