These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
74 related articles for article (PubMed ID: 162148)
1. Uptake of iron by Gomphosphaeria aponina, a possible control organism for the Florida red tide Pytochodiscus brevis. Eng-Wilmot DL; Martin DF Microbios; 1979; 26(104):103-13. PubMed ID: 162148 [TBL] [Abstract][Full Text] [Related]
2. Growth response of the marine blue-green alga, Gomphosphaeria aponina, to inorganic nutrients and significance to management of Florida red tide. Eng-Wilmot DL; Martin DF Microbios; 1977; 19(77-78):167-79. PubMed ID: 101740 [TBL] [Abstract][Full Text] [Related]
3. Siderophore-mediated iron uptake in different strains of Anabaena sp. Goldman SJ; Lammers PJ; Berman MS; Sanders-Loehr J J Bacteriol; 1983 Dec; 156(3):1144-50. PubMed ID: 6227608 [TBL] [Abstract][Full Text] [Related]
4. Report on a biochemical red tide repressive agent. Kutt EC; Martin DF Environ Lett; 1975; 9(2):195-208. PubMed ID: 812692 [TBL] [Abstract][Full Text] [Related]
5. Short-term effects on Artemia salina of aponin and Gomphosphaeria aponina in unialgal cultures and in mixed cultures with gymnodinium breve. Eng-Wilmot DL; Martin DF J Pharm Sci; 1979 Aug; 68(8):963-6. PubMed ID: 113525 [TBL] [Abstract][Full Text] [Related]
6. The influence of Gomphosphaeria aponina on the growth of Gymnodinium breve and the effect of aponin on the ichthyotoxicity of Gymnodinium breve. McCoy LF; Martin DF Chem Biol Interact; 1977 Apr; 17(1):17-24. PubMed ID: 406055 [TBL] [Abstract][Full Text] [Related]
7. Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands. Barbeau K; Rue EL; Bruland KW; Butler A Nature; 2001 Sep; 413(6854):409-13. PubMed ID: 11574885 [TBL] [Abstract][Full Text] [Related]
9. Active transport of ferric schizokinen in Anabaena sp. Lammers PJ; Sanders-Loehr J J Bacteriol; 1982 Jul; 151(1):288-94. PubMed ID: 6806241 [TBL] [Abstract][Full Text] [Related]
10. Utilization of Fe3+-acinetoferrin analogs as an iron source by Mycobacterium tuberculosis. Rodriguez GM; Gardner R; Kaur N; Phanstiel O Biometals; 2008 Feb; 21(1):93-103. PubMed ID: 17401548 [TBL] [Abstract][Full Text] [Related]
11. Transferrin, is a mixed chelate-protein ternary complex involved in the mechanism of iron uptake by serum-transferrin in vitro? Pakdaman R; Abdallah FB; El Hage Chahine JM J Mol Biol; 1999 Nov; 293(5):1273-84. PubMed ID: 10547300 [TBL] [Abstract][Full Text] [Related]
12. Reduction of iron by extracellular iron reductases: implications for microbial iron acquisition. Cowart RE Arch Biochem Biophys; 2002 Apr; 400(2):273-81. PubMed ID: 12054438 [TBL] [Abstract][Full Text] [Related]
13. A new hydroxamate siderophore for iron supply of Salmonella. Rabsch W; Paul P; Reissbrodt R Acta Microbiol Hung; 1987; 34(1):85-92. PubMed ID: 2957886 [TBL] [Abstract][Full Text] [Related]
14. Acquisition of iron by Trichodesmium and associated bacteria in culture. Roe KL; Barbeau K; Mann EL; Haygood MG Environ Microbiol; 2012 Jul; 14(7):1681-95. PubMed ID: 22118517 [TBL] [Abstract][Full Text] [Related]
15. Ternary complex formation facilitates a redox mechanism for iron release from a siderophore. Mies KA; Wirgau JI; Crumbliss AL Biometals; 2006 Apr; 19(2):115-26. PubMed ID: 16718598 [TBL] [Abstract][Full Text] [Related]
16. [Siderophores--the carriers of the iron ion]. Chimiak A Postepy Biochem; 1984; 30(3-4):435-60. PubMed ID: 6242126 [No Abstract] [Full Text] [Related]