These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16214801)

  • 1. Nucleic acid melting by Escherichia coli CspE.
    Phadtare S; Severinov K
    Nucleic Acids Res; 2005; 33(17):5583-90. PubMed ID: 16214801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism of nucleic acid melting by a CspA family protein.
    Phadtare S; Inouye M; Severinov K
    J Mol Biol; 2004 Mar; 337(1):147-55. PubMed ID: 15001358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nucleic acid melting activity of Escherichia coli CspE is critical for transcription antitermination and cold acclimation of cells.
    Phadtare S; Inouye M; Severinov K
    J Biol Chem; 2002 Mar; 277(9):7239-45. PubMed ID: 11756430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence-selective interactions with RNA by CspB, CspC and CspE, members of the CspA family of Escherichia coli.
    Phadtare S; Inouye M
    Mol Microbiol; 1999 Sep; 33(5):1004-14. PubMed ID: 10476034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three amino acids in Escherichia coli CspE surface-exposed aromatic patch are critical for nucleic acid melting activity leading to transcription antitermination and cold acclimation of cells.
    Phadtare S; Tyagi S; Inouye M; Severinov K
    J Biol Chem; 2002 Nov; 277(48):46706-11. PubMed ID: 12324471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Escherichia coli global gene expression profiles in response to overexpression and deletion of CspC and CspE.
    Phadtare S; Tadigotla V; Shin WH; Sengupta A; Severinov K
    J Bacteriol; 2006 Apr; 188(7):2521-7. PubMed ID: 16547039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of nucleic acid chaperone activity of CspA and its homologues.
    Phadtare S; Zhu L; Uemori T; Mukai H; Kato I; Inouye M
    J Mol Microbiol Biotechnol; 2009; 17(3):110-7. PubMed ID: 19556744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specificity of DNA binding and dimerization by CspE from Escherichia coli.
    Johnston D; Tavano C; Wickner S; Trun N
    J Biol Chem; 2006 Dec; 281(52):40208-15. PubMed ID: 17088256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic AMP receptor protein regulates cspE, an early cold-inducible gene, in Escherichia coli.
    Uppal S; Maurya SR; Hire RS; Jawali N
    J Bacteriol; 2011 Nov; 193(22):6142-51. PubMed ID: 21926233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Posttranscriptional regulation of cspE in Escherichia coli: involvement of the short 5'-untranslated region.
    Uppal S; Akkipeddi VS; Jawali N
    FEMS Microbiol Lett; 2008 Feb; 279(1):83-91. PubMed ID: 18177308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nascent RNA in transcription complexes interacts with CspE, a small protein in E. coli implicated in chromatin condensation.
    Hanna MM; Liu K
    J Mol Biol; 1998 Sep; 282(2):227-39. PubMed ID: 9735283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Escherichia coli cspE, whose product negatively regulates transcription of cspA, the gene for the major cold shock protein.
    Bae W; Phadtare S; Severinov K; Inouye M
    Mol Microbiol; 1999 Mar; 31(5):1429-41. PubMed ID: 10200963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of changes in gene expression due to RNA melting activities of translation initiation factor IF1 and a cold shock protein of the CspA family.
    Phadtare S; Severinov K
    Genes Cells; 2009 Nov; 14(11):1227-39. PubMed ID: 19840122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Escherichia coli CspA-family RNA chaperones are transcription antiterminators.
    Bae W; Xia B; Inouye M; Severinov K
    Proc Natl Acad Sci U S A; 2000 Jul; 97(14):7784-9. PubMed ID: 10884409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional conservation of cold shock domains in bacteria and higher plants.
    Nakaminami K; Karlson DT; Imai R
    Proc Natl Acad Sci U S A; 2006 Jun; 103(26):10122-7. PubMed ID: 16788067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of CspC and CspE in regulation of expression of RpoS and UspA, the stress response proteins in Escherichia coli.
    Phadtare S; Inouye M
    J Bacteriol; 2001 Feb; 183(4):1205-14. PubMed ID: 11157932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular RNA Targets of Cold Shock Proteins CspC and CspE and Their Importance for Serum Resistance in Septicemic Escherichia coli.
    Yair Y; Michaux C; Biran D; Bernhard J; Vogel J; Barquist L; Ron EZ
    mSystems; 2022 Aug; 7(4):e0008622. PubMed ID: 35695420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of RNA chaperone activity using an Escherichia coli mutant.
    Kim MH; Imai R
    Methods Mol Biol; 2015; 1259():117-23. PubMed ID: 25579583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of csp genes in E. coli K-12 in defined rich and defined minimal media during normal growth, and after cold-shock.
    Czapski TR; Trun N
    Gene; 2014 Aug; 547(1):91-7. PubMed ID: 24952137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone.
    Jiang W; Hou Y; Inouye M
    J Biol Chem; 1997 Jan; 272(1):196-202. PubMed ID: 8995247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.