These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 16214805)

  • 1. A highly sensitive selection method for directed evolution of homing endonucleases.
    Chen Z; Zhao H
    Nucleic Acids Res; 2005 Oct; 33(18):e154. PubMed ID: 16214805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directed evolution of homing endonuclease I-SceI with altered sequence specificity.
    Chen Z; Wen F; Sun N; Zhao H
    Protein Eng Des Sel; 2009 Apr; 22(4):249-56. PubMed ID: 19176595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed evolution and substrate specificity profile of homing endonuclease I-SceI.
    Doyon JB; Pattanayak V; Meyer CB; Liu DR
    J Am Chem Soc; 2006 Feb; 128(7):2477-84. PubMed ID: 16478204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chimeras of the homing endonuclease PI-SceI and the homologous Candida tropicalis intein: a study to explore the possibility of exchanging DNA-binding modules to obtain highly specific endonucleases with altered specificity.
    Steuer S; Pingoud V; Pingoud A; Wende W
    Chembiochem; 2004 Feb; 5(2):206-13. PubMed ID: 14760742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of I-SceI homing endonucleases with increased DNA recognition site specificity.
    Joshi R; Ho KK; Tenney K; Chen JH; Golden BL; Gimble FS
    J Mol Biol; 2011 Jan; 405(1):185-200. PubMed ID: 21029741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site- and strand-specific nicking of DNA by fusion proteins derived from MutH and I-SceI or TALE repeats.
    Gabsalilow L; Schierling B; Friedhoff P; Pingoud A; Wende W
    Nucleic Acids Res; 2013 Apr; 41(7):e83. PubMed ID: 23408850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repurposing the Homing Endonuclease I-SceI for Positive Selection and Development of Gene-Editing Technologies.
    Lee KZ; Mechikoff MA; Parasa MK; Rankin TJ; Pandolfi P; Fitzgerald KS; Hillman ET; Solomon KV
    ACS Synth Biol; 2022 Jan; 11(1):53-60. PubMed ID: 35007422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An in vivo selection system for homing endonuclease activity.
    Gruen M; Chang K; Serbanescu I; Liu DR
    Nucleic Acids Res; 2002 Apr; 30(7):e29. PubMed ID: 11917035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetrical recognition and activity of the I-SceI endonuclease on its site and on intron-exon junctions.
    Perrin A; Buckle M; Dujon B
    EMBO J; 1993 Jul; 12(7):2939-47. PubMed ID: 8335007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering variants of the I-SceI homing endonuclease with strand-specific and site-specific DNA-nicking activity.
    Niu Y; Tenney K; Li H; Gimble FS
    J Mol Biol; 2008 Sep; 382(1):188-202. PubMed ID: 18644379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creating highly specific nucleases by fusion of active restriction endonucleases and catalytically inactive homing endonucleases.
    Fonfara I; Curth U; Pingoud A; Wende W
    Nucleic Acids Res; 2012 Jan; 40(2):847-60. PubMed ID: 21965534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus.
    Plessis A; Perrin A; Haber JE; Dujon B
    Genetics; 1992 Mar; 130(3):451-60. PubMed ID: 1551570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homing endonucleases: from basics to therapeutic applications.
    Marcaida MJ; Muñoz IG; Blanco FJ; Prieto J; Montoya G
    Cell Mol Life Sci; 2010 Mar; 67(5):727-48. PubMed ID: 19915993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A two-plasmid bacterial selection system for characterization and engineering of homing endonucleases.
    Sun N; Zhao H
    Methods Mol Biol; 2014; 1123():87-96. PubMed ID: 24510262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the plasticity of DNA target site recognition of the PI-SceI homing endonuclease using a bacterial two-hybrid selection system.
    Gimble FS; Moure CM; Posey KL
    J Mol Biol; 2003 Dec; 334(5):993-1008. PubMed ID: 14643662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate recognition and induced DNA distortion by the PI-SceI endonuclease, an enzyme generated by protein splicing.
    Gimble FS; Wang J
    J Mol Biol; 1996 Oct; 263(2):163-80. PubMed ID: 8913299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homing endonuclease mediated gene targeting in Anopheles gambiae cells and embryos.
    Windbichler N; Papathanos PA; Catteruccia F; Ranson H; Burt A; Crisanti A
    Nucleic Acids Res; 2007; 35(17):5922-33. PubMed ID: 17726053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perpetuating the homing endonuclease life cycle: identification of mutations that modulate and change I-TevI cleavage preference.
    Roy AC; Wilson GG; Edgell DR
    Nucleic Acids Res; 2016 Sep; 44(15):7350-9. PubMed ID: 27387281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-Function Studies of Two Yeast Homing Endonucleases that Evolved to Cleave Identical Targets with Dissimilar Rates and Specificities.
    Nawimanage RR; Yuan Z; Casares M; Joshi R; Lohman JR; Gimble FS
    J Mol Biol; 2022 May; 434(9):167550. PubMed ID: 35317996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast and antibiotic free genome integration into Escherichia coli chromosome.
    Egger E; Tauer C; Cserjan-Puschmann M; Grabherr R; Striedner G
    Sci Rep; 2020 Oct; 10(1):16510. PubMed ID: 33020519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.