BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 16214875)

  • 1. Ca2+ changes the force sensitivity of the hair-cell transduction channel.
    Cheung EL; Corey DP
    Biophys J; 2006 Jan; 90(1):124-39. PubMed ID: 16214875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transduction channels' gating can control friction on vibrating hair-cell bundles in the ear.
    Bormuth V; Barral J; Joanny JF; Jülicher F; Martin P
    Proc Natl Acad Sci U S A; 2014 May; 111(20):7185-90. PubMed ID: 24799674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltage-Mediated Control of Spontaneous Bundle Oscillations in Saccular Hair Cells.
    Meenderink SW; Quiñones PM; Bozovic D
    J Neurosci; 2015 Oct; 35(43):14457-66. PubMed ID: 26511238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of active hair bundle motion in auditory hair cells.
    Ricci AJ; Crawford AC; Fettiplace R
    J Neurosci; 2002 Jan; 22(1):44-52. PubMed ID: 11756487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Displacement-clamp measurement of the forces exerted by gating springs in the hair bundle.
    Jaramillo F; Hudspeth AJ
    Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1330-4. PubMed ID: 7679501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active hair bundle motion linked to fast transducer adaptation in auditory hair cells.
    Ricci AJ; Crawford AC; Fettiplace R
    J Neurosci; 2000 Oct; 20(19):7131-42. PubMed ID: 11007868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The actions of calcium on hair bundle mechanics in mammalian cochlear hair cells.
    Beurg M; Nam JH; Crawford A; Fettiplace R
    Biophys J; 2008 Apr; 94(7):2639-53. PubMed ID: 18178649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biophysical and pharmacological characterization of voltage-gated calcium currents in turtle auditory hair cells.
    Schnee ME; Ricci AJ
    J Physiol; 2003 Jun; 549(Pt 3):697-717. PubMed ID: 12740421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid, active hair bundle movements in hair cells from the bullfrog's sacculus.
    Benser ME; Marquis RE; Hudspeth AJ
    J Neurosci; 1996 Sep; 16(18):5629-43. PubMed ID: 8795619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid mechanical stimulation of inner-ear hair cells by photonic pressure.
    Abeytunge S; Gianoli F; Hudspeth AJ; Kozlov AS
    Elife; 2021 Jul; 10():. PubMed ID: 34227465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hair-bundle movements elicited by transepithelial electrical stimulation of hair cells in the sacculus of the bullfrog.
    Bozovic D; Hudspeth AJ
    Proc Natl Acad Sci U S A; 2003 Feb; 100(3):958-63. PubMed ID: 12538849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage dependence of adaptation and active bundle movement in bullfrog saccular hair cells.
    Assad JA; Hacohen N; Corey DP
    Proc Natl Acad Sci U S A; 1989 Apr; 86(8):2918-22. PubMed ID: 2468161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model for amplification of hair-bundle motion by cyclical binding of Ca2+ to mechanoelectrical-transduction channels.
    Choe Y; Magnasco MO; Hudspeth AJ
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15321-6. PubMed ID: 9860967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of Ca2+ entry through mechanosensitive channels localizes the site of mechanoelectrical transduction in hair cells.
    Lumpkin EA; Hudspeth AJ
    Proc Natl Acad Sci U S A; 1995 Oct; 92(22):10297-301. PubMed ID: 7479771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Bundle of Mechanisms: Inner-Ear Hair-Cell Mechanotransduction.
    Ó Maoiléidigh D; Ricci AJ
    Trends Neurosci; 2019 Mar; 42(3):221-236. PubMed ID: 30661717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of extracellular Ca2+ concentration on hair-bundle stiffness and gating-spring integrity in hair cells.
    Marquis RE; Hudspeth AJ
    Proc Natl Acad Sci U S A; 1997 Oct; 94(22):11923-8. PubMed ID: 9342338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cadherin 23 is a component of the tip link in hair-cell stereocilia.
    Siemens J; Lillo C; Dumont RA; Reynolds A; Williams DS; Gillespie PG; Müller U
    Nature; 2004 Apr; 428(6986):950-5. PubMed ID: 15057245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells.
    Corey DP; García-Añoveros J; Holt JR; Kwan KY; Lin SY; Vollrath MA; Amalfitano A; Cheung EL; Derfler BH; Duggan A; Géléoc GS; Gray PA; Hoffman MP; Rehm HL; Tamasauskas D; Zhang DS
    Nature; 2004 Dec; 432(7018):723-30. PubMed ID: 15483558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation in hair cells.
    Eatock RA
    Annu Rev Neurosci; 2000; 23():285-314. PubMed ID: 10845066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog's saccular hair cell.
    Howard J; Hudspeth AJ
    Neuron; 1988 May; 1(3):189-99. PubMed ID: 2483095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.