These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 16214875)
1. Ca2+ changes the force sensitivity of the hair-cell transduction channel. Cheung EL; Corey DP Biophys J; 2006 Jan; 90(1):124-39. PubMed ID: 16214875 [TBL] [Abstract][Full Text] [Related]
2. Transduction channels' gating can control friction on vibrating hair-cell bundles in the ear. Bormuth V; Barral J; Joanny JF; Jülicher F; Martin P Proc Natl Acad Sci U S A; 2014 May; 111(20):7185-90. PubMed ID: 24799674 [TBL] [Abstract][Full Text] [Related]
3. Voltage-Mediated Control of Spontaneous Bundle Oscillations in Saccular Hair Cells. Meenderink SW; Quiñones PM; Bozovic D J Neurosci; 2015 Oct; 35(43):14457-66. PubMed ID: 26511238 [TBL] [Abstract][Full Text] [Related]
4. Mechanisms of active hair bundle motion in auditory hair cells. Ricci AJ; Crawford AC; Fettiplace R J Neurosci; 2002 Jan; 22(1):44-52. PubMed ID: 11756487 [TBL] [Abstract][Full Text] [Related]
5. Displacement-clamp measurement of the forces exerted by gating springs in the hair bundle. Jaramillo F; Hudspeth AJ Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1330-4. PubMed ID: 7679501 [TBL] [Abstract][Full Text] [Related]
6. Active hair bundle motion linked to fast transducer adaptation in auditory hair cells. Ricci AJ; Crawford AC; Fettiplace R J Neurosci; 2000 Oct; 20(19):7131-42. PubMed ID: 11007868 [TBL] [Abstract][Full Text] [Related]
7. The actions of calcium on hair bundle mechanics in mammalian cochlear hair cells. Beurg M; Nam JH; Crawford A; Fettiplace R Biophys J; 2008 Apr; 94(7):2639-53. PubMed ID: 18178649 [TBL] [Abstract][Full Text] [Related]
8. Biophysical and pharmacological characterization of voltage-gated calcium currents in turtle auditory hair cells. Schnee ME; Ricci AJ J Physiol; 2003 Jun; 549(Pt 3):697-717. PubMed ID: 12740421 [TBL] [Abstract][Full Text] [Related]
9. Rapid, active hair bundle movements in hair cells from the bullfrog's sacculus. Benser ME; Marquis RE; Hudspeth AJ J Neurosci; 1996 Sep; 16(18):5629-43. PubMed ID: 8795619 [TBL] [Abstract][Full Text] [Related]
10. Rapid mechanical stimulation of inner-ear hair cells by photonic pressure. Abeytunge S; Gianoli F; Hudspeth AJ; Kozlov AS Elife; 2021 Jul; 10():. PubMed ID: 34227465 [TBL] [Abstract][Full Text] [Related]
11. Hair-bundle movements elicited by transepithelial electrical stimulation of hair cells in the sacculus of the bullfrog. Bozovic D; Hudspeth AJ Proc Natl Acad Sci U S A; 2003 Feb; 100(3):958-63. PubMed ID: 12538849 [TBL] [Abstract][Full Text] [Related]
12. Voltage dependence of adaptation and active bundle movement in bullfrog saccular hair cells. Assad JA; Hacohen N; Corey DP Proc Natl Acad Sci U S A; 1989 Apr; 86(8):2918-22. PubMed ID: 2468161 [TBL] [Abstract][Full Text] [Related]
13. A model for amplification of hair-bundle motion by cyclical binding of Ca2+ to mechanoelectrical-transduction channels. Choe Y; Magnasco MO; Hudspeth AJ Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15321-6. PubMed ID: 9860967 [TBL] [Abstract][Full Text] [Related]
14. Detection of Ca2+ entry through mechanosensitive channels localizes the site of mechanoelectrical transduction in hair cells. Lumpkin EA; Hudspeth AJ Proc Natl Acad Sci U S A; 1995 Oct; 92(22):10297-301. PubMed ID: 7479771 [TBL] [Abstract][Full Text] [Related]
15. A Bundle of Mechanisms: Inner-Ear Hair-Cell Mechanotransduction. Ó Maoiléidigh D; Ricci AJ Trends Neurosci; 2019 Mar; 42(3):221-236. PubMed ID: 30661717 [TBL] [Abstract][Full Text] [Related]
16. Effects of extracellular Ca2+ concentration on hair-bundle stiffness and gating-spring integrity in hair cells. Marquis RE; Hudspeth AJ Proc Natl Acad Sci U S A; 1997 Oct; 94(22):11923-8. PubMed ID: 9342338 [TBL] [Abstract][Full Text] [Related]
17. Cadherin 23 is a component of the tip link in hair-cell stereocilia. Siemens J; Lillo C; Dumont RA; Reynolds A; Williams DS; Gillespie PG; Müller U Nature; 2004 Apr; 428(6986):950-5. PubMed ID: 15057245 [TBL] [Abstract][Full Text] [Related]
18. TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Corey DP; García-Añoveros J; Holt JR; Kwan KY; Lin SY; Vollrath MA; Amalfitano A; Cheung EL; Derfler BH; Duggan A; Géléoc GS; Gray PA; Hoffman MP; Rehm HL; Tamasauskas D; Zhang DS Nature; 2004 Dec; 432(7018):723-30. PubMed ID: 15483558 [TBL] [Abstract][Full Text] [Related]
19. Adaptation in hair cells. Eatock RA Annu Rev Neurosci; 2000; 23():285-314. PubMed ID: 10845066 [TBL] [Abstract][Full Text] [Related]
20. Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog's saccular hair cell. Howard J; Hudspeth AJ Neuron; 1988 May; 1(3):189-99. PubMed ID: 2483095 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]