These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 16215181)

  • 21. Candida albicans ISW2 Regulates Chlamydospore Suspensor Cell Formation and Virulence In Vivo in a Mouse Model of Disseminated Candidiasis.
    Navarathna DH; Pathirana RU; Lionakis MS; Nickerson KW; Roberts DD
    PLoS One; 2016; 11(10):e0164449. PubMed ID: 27727302
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic basis for coordination of meiosis and sexual structure maturation in
    Liu L; He GJ; Chen L; Zheng J; Chen Y; Shen L; Tian X; Li E; Yang E; Liao G; Wang L
    Elife; 2018 Oct; 7():. PubMed ID: 30281018
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Morphotype-specific effector functions of Cryptococcus neoformans PUM1.
    Kaur JN; Panepinto JC
    Sci Rep; 2016 Mar; 6():23638. PubMed ID: 27008977
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterizing the role of the microtubule binding protein Bim1 in Cryptococcus neoformans.
    Staudt MW; Kruzel EK; Shimizu K; Hull CM
    Fungal Genet Biol; 2010 Apr; 47(4):310-7. PubMed ID: 20044015
    [TBL] [Abstract][Full Text] [Related]  

  • 25. AfLaeA, a Global Regulator of Mycelial Growth, Chlamydospore Production, Pathogenicity, Secondary Metabolism, and Energy Metabolism in the Nematode-Trapping Fungus
    Zhang Y; Wang X; Ran Y; Zhang KQ; Li GH
    Microbiol Spectr; 2023 Aug; 11(4):e0018623. PubMed ID: 37358432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell cycle dynamics and quorum sensing in Candida albicans chlamydospores are distinct from budding and hyphal growth.
    Martin SW; Douglas LM; Konopka JB
    Eukaryot Cell; 2005 Jul; 4(7):1191-202. PubMed ID: 16002645
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Morphotype transition and sexual reproduction are genetically associated in a ubiquitous environmental pathogen.
    Wang L; Tian X; Gyawali R; Upadhyay S; Foyle D; Wang G; Cai JJ; Lin X
    PLoS Pathog; 2014 Jun; 10(6):e1004185. PubMed ID: 24901238
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glucosamine stimulates pheromone-independent dimorphic transition in Cryptococcus neoformans by promoting Crz1 nuclear translocation.
    Xu X; Lin J; Zhao Y; Kirkman E; So YS; Bahn YS; Lin X
    PLoS Genet; 2017 Sep; 13(9):e1006982. PubMed ID: 28898238
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The STE12alpha homolog is required for haploid filamentation but largely dispensable for mating and virulence in Cryptococcus neoformans.
    Yue C; Cavallo LM; Alspaugh JA; Wang P; Cox GM; Perfect JR; Heitman J
    Genetics; 1999 Dec; 153(4):1601-15. PubMed ID: 10581270
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Uniparental nuclear inheritance following bisexual mating in fungi.
    Yadav V; Sun S; Heitman J
    Elife; 2021 Aug; 10():. PubMed ID: 34338631
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PAS Domain Protein Pas3 Interacts with the Chromatin Modifier Bre1 in Regulating Cryptococcal Morphogenesis.
    Zhao Y; Upadhyay S; Lin X
    mBio; 2018 Nov; 9(6):. PubMed ID: 30425151
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Blue light negatively regulates the sexual filamentation via the Cwc1 and Cwc2 proteins in Cryptococcus neoformans.
    Lu YK; Sun KH; Shen WC
    Mol Microbiol; 2005 Apr; 56(2):480-91. PubMed ID: 15813738
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calcineurin is required for hyphal elongation during mating and haploid fruiting in Cryptococcus neoformans.
    Cruz MC; Fox DS; Heitman J
    EMBO J; 2001 Mar; 20(5):1020-32. PubMed ID: 11230126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Septins enforce morphogenetic events during sexual reproduction and contribute to virulence of Cryptococcus neoformans.
    Kozubowski L; Heitman J
    Mol Microbiol; 2010 Feb; 75(3):658-75. PubMed ID: 19943902
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unisexual versus bisexual mating in Cryptococcus neoformans: Consequences and biological impacts.
    Fu C; Sun S; Billmyre RB; Roach KC; Heitman J
    Fungal Genet Biol; 2015 May; 78():65-75. PubMed ID: 25173822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cryptococcus neoformans: morphogenesis, infection, and evolution.
    Lin X
    Infect Genet Evol; 2009 Jul; 9(4):401-16. PubMed ID: 19460306
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Whole RNA-sequencing and gene expression analysis of Trichoderma harzianum Tr-92 under chlamydospore-producing condition.
    Yuan M; Huang Y; Jia Z; Ge W; Zhang L; Zhao Q; Song S; Huang Y
    Genes Genomics; 2019 Jun; 41(6):689-699. PubMed ID: 30968334
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biogenesis, germination, and pathogenesis of
    Ortiz SC; Hull CM
    Microbiol Mol Biol Rev; 2024 Mar; 88(1):e0019623. PubMed ID: 38440970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mating pheromone in Cryptococcus neoformans is regulated by a transcriptional/degradative "futile" cycle.
    Park YD; Panepinto J; Shin S; Larsen P; Giles S; Williamson PR
    J Biol Chem; 2010 Nov; 285(45):34746-56. PubMed ID: 20801870
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phospholipid-binding protein Cts1 controls septation and functions coordinately with calcineurin in Cryptococcus neoformans.
    Fox DS; Cox GM; Heitman J
    Eukaryot Cell; 2003 Oct; 2(5):1025-35. PubMed ID: 14555485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.