These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 16215233)

  • 21. Dehydrogenase activities of fatty acid synthesizing enzyme systems.
    Katiyar SS; Porter JW
    Experientia Suppl; 1980; 36():181-231. PubMed ID: 6987077
    [No Abstract]   [Full Text] [Related]  

  • 22. Binding of NADP
    Blaise M; Van Wyk N; Banères-Roquet F; Guérardel Y; Kremer L
    Biochem J; 2017 Mar; 474(6):907-921. PubMed ID: 28126742
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analyses of co-operative transitions in Plasmodium falciparum beta-ketoacyl acyl carrier protein reductase upon co-factor and acyl carrier protein binding.
    Karmodiya K; Surolia N
    FEBS J; 2006 Sep; 273(17):4093-103. PubMed ID: 16934037
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elementary steps in the reaction mechanism of chicken liver fatty acid synthase: beta-ketoacyl reductase and enoyl reductase.
    Cognet JA; Hammes GG
    Biochemistry; 1985 Jan; 24(2):290-7. PubMed ID: 3978075
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human fatty acid synthase: assembling recombinant halves of the fatty acid synthase subunit protein reconstitutes enzyme activity.
    Jayakumar A; Chirala SS; Wakil SJ
    Proc Natl Acad Sci U S A; 1997 Nov; 94(23):12326-30. PubMed ID: 9356448
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of Lys-32 residues in R67 dihydrofolate reductase probed by asymmetric mutations.
    Hicks SN; Smiley RD; Stinnett LG; Minor KH; Howell EE
    J Biol Chem; 2004 Nov; 279(45):46995-7002. PubMed ID: 15333636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure of beta-ketoacyl-[acyl carrier protein] reductase from Escherichia coli: negative cooperativity and its structural basis.
    Price AC; Zhang YM; Rock CO; White SW
    Biochemistry; 2001 Oct; 40(43):12772-81. PubMed ID: 11669613
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elementary steps in the reaction mechanism of chicken liver fatty acid synthase. pH dependence of NADPH binding and isotope rate effect for beta-ketoacyl reductase.
    Yuan Z; Hammes GG
    J Biol Chem; 1984 Jun; 259(11):6748-51. PubMed ID: 6373765
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determinants of the dual cofactor specificity and substrate cooperativity of the human mitochondrial NAD(P)+-dependent malic enzyme: functional roles of glutamine 362.
    Hsieh JY; Liu GY; Chang GG; Hung HC
    J Biol Chem; 2006 Aug; 281(32):23237-45. PubMed ID: 16757477
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Studies on human aldose reductase. Probing the role of arginine 268 by site-directed mutagenesis.
    Kubiseski TJ; Flynn TG
    J Biol Chem; 1995 Jul; 270(28):16911-7. PubMed ID: 7622508
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mutagenesis of 3 alpha-hydroxysteroid dehydrogenase reveals a "push-pull" mechanism for proton transfer in aldo-keto reductases.
    Schlegel BP; Jez JM; Penning TM
    Biochemistry; 1998 Mar; 37(10):3538-48. PubMed ID: 9521675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A QM/MM study of the reaction mechanism of human β-ketoacyl reductase.
    Medina FE; Neves RP; Ramos MJ; Fernandes PA
    Phys Chem Chem Phys; 2016 Dec; 19(1):347-355. PubMed ID: 27905606
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A human fatty acid synthase inhibitor binds β-ketoacyl reductase in the keto-substrate site.
    Hardwicke MA; Rendina AR; Williams SP; Moore ML; Wang L; Krueger JA; Plant RN; Totoritis RD; Zhang G; Briand J; Burkhart WA; Brown KK; Parrish CA
    Nat Chem Biol; 2014 Sep; 10(9):774-9. PubMed ID: 25086508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence that the multifunctional polypeptides of vertebrate and fungal fatty acid synthases have arisen by independent gene fusion events.
    McCarthy AD; Goldring JP; Hardie DG
    FEBS Lett; 1983 Oct; 162(2):300-4. PubMed ID: 6354747
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical modification of an essential lysine at the active site of enoyl-CoA reductase in fatty acid synthetase.
    Poulose AJ; Kolattukudy PE
    Arch Biochem Biophys; 1980 Apr; 201(1):313-21. PubMed ID: 6772106
    [No Abstract]   [Full Text] [Related]  

  • 36. Characterization of the beta-carbon processing reactions of the mammalian cytosolic fatty acid synthase: role of the central core.
    Witkowski A; Joshi AK; Smith S
    Biochemistry; 2004 Aug; 43(32):10458-66. PubMed ID: 15301544
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of mammalian fatty acid synthetase activity by NADP involves decreased mobility of the 4'-phosphopantetheine prosthetic group.
    Stern A; Smith S
    J Biol Chem; 1987 Apr; 262(11):5087-92. PubMed ID: 3558385
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MabA (FabG1), a Mycobacterium tuberculosis protein involved in the long-chain fatty acid elongation system FAS-II.
    Marrakchi H; Ducasse S; Labesse G; Montrozier H; Margeat E; Emorine L; Charpentier X; Daffé M; Quémard AK
    Microbiology (Reading); 2002 Apr; 148(Pt 4):951-960. PubMed ID: 11932442
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure of mouse fatty acid synthase mRNA. Identification of the two NADPH binding sites.
    Paulauskis JD; Sul HS
    Biochem Biophys Res Commun; 1989 Feb; 158(3):690-5. PubMed ID: 2920037
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic and structural investigation of acyl-binding sites on avian fatty acid synthase.
    Cardon JW; Hammes GG
    J Biol Chem; 1983 Apr; 258(8):4802-7. PubMed ID: 6833278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.