These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 16215821)

  • 1. Laboratory scale bioremediation of acid mine water drainage from a disused tin mine.
    Darkwah L; Rowson NA; Hewitt CJ
    Biotechnol Lett; 2005 Sep; 27(17):1251-7. PubMed ID: 16215821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of Acidithiobacillus ferrooxidans in acid mine drainage environments using fluorescent in situ hybridization (FISH).
    Mahmoud KK; Leduc LG; Ferroni GD
    J Microbiol Methods; 2005 Apr; 61(1):33-45. PubMed ID: 15676194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utility of Eucalyptus tereticornis (Smith) bark and Desulfotomaculum nigrificans for the remediation of acid mine drainage.
    Chockalingam E; Subramanian S
    Bioresour Technol; 2009 Jan; 100(2):615-21. PubMed ID: 18760595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of bacterial diversity in acidic pond water and compost after treatment of artificial acid mine drainage for metal removal.
    Morales TA; Dopson M; Athar R; Herbert RB
    Biotechnol Bioeng; 2005 Jun; 90(5):543-51. PubMed ID: 15818559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of in situ layers for treatment of acid mine drainage: a field comparison.
    Hulshof AH; Blowes DW; Gould WD
    Water Res; 2006 May; 40(9):1816-26. PubMed ID: 16626781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy metals removal from acid mine drainage water using biogenic hydrogen sulphide and effluent from anaerobic treatment: effect of pH.
    Jiménez-Rodríguez AM; Durán-Barrantes MM; Borja R; Sánchez E; Colmenarejo MF; Raposo F
    J Hazard Mater; 2009 Jun; 165(1-3):759-65. PubMed ID: 19056169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum.
    McCauley CA; O'Sullivan AD; Milke MW; Weber PA; Trumm DA
    Water Res; 2009 Mar; 43(4):961-70. PubMed ID: 19070349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination.
    Martins M; Faleiro ML; Barros RJ; Veríssimo AR; Barreiros MA; Costa MC
    J Hazard Mater; 2009 Jul; 166(2-3):706-13. PubMed ID: 19135795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge.
    Sibrell PL; Montgomery GA; Ritenour KL; Tucker TW
    Water Res; 2009 May; 43(8):2240-50. PubMed ID: 19269663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial community activities during establishment, performance, and decline of bench-scale passive treatment systems for mine drainage.
    Logan MV; Reardon KF; Figueroa LA; McLain JE; Ahmann DM
    Water Res; 2005 Nov; 39(18):4537-51. PubMed ID: 16213004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on removal of metal ions and sulphate reduction using rice husk and Desulfotomaculum nigrificans with reference to remediation of acid mine drainage.
    Chockalingam E; Subramanian S
    Chemosphere; 2006 Feb; 62(5):699-708. PubMed ID: 16002121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective remediation of grossly polluted acidic, and metal-rich, spoil heap drainage using a novel, low-cost, permeable reactive barrier in Northumberland, UK.
    Jarvis AP; Moustafa M; Orme PH; Younger PL
    Environ Pollut; 2006 Sep; 143(2):261-8. PubMed ID: 16443312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorus removal performance of acid mine drainage from wastewater.
    Ruihua L; Lin Z; Tao T; Bo L
    J Hazard Mater; 2011 Jun; 190(1-3):669-76. PubMed ID: 21514994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A modular continuous flow reactor system for the selective bio-oxidation of iron and precipitation of schwertmannite from mine-impacted waters.
    Hedrich S; Johnson DB
    Bioresour Technol; 2012 Feb; 106():44-9. PubMed ID: 22197072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of three bacteria in arsenic solution and their application for arsenic removal from wastewater.
    Mondal P; Majumder CB; Mohanty B
    J Basic Microbiol; 2008 Dec; 48(6):521-5. PubMed ID: 18792057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influences of wetland plants on weathered acidic mine tailings.
    Stoltz E; Greger M
    Environ Pollut; 2006 Nov; 144(2):689-94. PubMed ID: 16584823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sizing criteria for a low footprint passive mine water treatment system.
    Sapsford DJ; Williams KP
    Water Res; 2009 Feb; 43(2):423-32. PubMed ID: 19022469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal and recovery of metal ions from acid mine drainage using lignite--A low cost sorbent.
    Mohan D; Chander S
    J Hazard Mater; 2006 Oct; 137(3):1545-53. PubMed ID: 16784810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cultivation-dependent and cultivation-independent characterization of the microbial community in acid mine drainage associated with acidic Pb/Zn mine tailings at Lechang, Guangdong, China.
    Tan GL; Shu WS; Hallberg KB; Li F; Lan CY; Huang LN
    FEMS Microbiol Ecol; 2007 Jan; 59(1):118-26. PubMed ID: 17059483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates.
    Congeevaram S; Dhanarani S; Park J; Dexilin M; Thamaraiselvi K
    J Hazard Mater; 2007 Jul; 146(1-2):270-7. PubMed ID: 17218056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.