These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Ethanol production from hexoses, pentoses, and dilute-acid hydrolyzate by Mucor indicus. Sues A; Millati R; Edebo L; Taherzadeh MJ FEMS Yeast Res; 2005 Apr; 5(6-7):669-76. PubMed ID: 15780667 [TBL] [Abstract][Full Text] [Related]
3. Fed-batch cultivation of Saccharomyces cerevisiae on lignocellulosic hydrolyzate. Petersson A; Lidén G Biotechnol Lett; 2007 Feb; 29(2):219-25. PubMed ID: 17091372 [TBL] [Abstract][Full Text] [Related]
4. Effects of different growth forms of Mucor indicus on cultivation on dilute-acid lignocellulosic hydrolyzate, inhibitor tolerance, and cell wall composition. Lennartsson PR; Karimi K; Edebo L; Taherzadeh MJ J Biotechnol; 2009 Sep; 143(4):255-61. PubMed ID: 19631243 [TBL] [Abstract][Full Text] [Related]
5. In situ detoxification and continuous cultivation of dilute-acid hydrolyzate to ethanol by encapsulated S. cerevisiae. Talebnia F; Taherzadeh MJ J Biotechnol; 2006 Sep; 125(3):377-84. PubMed ID: 16621080 [TBL] [Abstract][Full Text] [Related]
6. Metabolic behavior of immobilized Candida guilliermondii cells during batch xylitol production from sugarcane bagasse acid hydrolyzate. Carvalho W; Silva SS; Converti A; Vitolo M Biotechnol Bioeng; 2002 Jul; 79(2):165-9. PubMed ID: 12115432 [TBL] [Abstract][Full Text] [Related]
7. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Keating JD; Panganiban C; Mansfield SD Biotechnol Bioeng; 2006 Apr; 93(6):1196-206. PubMed ID: 16470880 [TBL] [Abstract][Full Text] [Related]
8. Lactic acid production from xylose by the fungus Rhizopus oryzae. Maas RH; Bakker RR; Eggink G; Weusthuis RA Appl Microbiol Biotechnol; 2006 Oct; 72(5):861-8. PubMed ID: 16528511 [TBL] [Abstract][Full Text] [Related]
9. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Martín C; Marcet M; Almazán O; Jönsson LJ Bioresour Technol; 2007 Jul; 98(9):1767-73. PubMed ID: 16934451 [TBL] [Abstract][Full Text] [Related]
10. Yeast strains for ethanol production from lignocellulosic hydrolysates during in situ detoxification. Tian S; Zhou G; Yan F; Yu Y; Yang X Biotechnol Adv; 2009; 27(5):656-60. PubMed ID: 19393310 [TBL] [Abstract][Full Text] [Related]
11. Strain construction for ethanol production from dilute-acid lignocellulosic hydrolysate. Yan F; Bai F; Tian S; Zhang J; Zhang Z; Yang X Appl Biochem Biotechnol; 2009 Jun; 157(3):473-82. PubMed ID: 18751961 [TBL] [Abstract][Full Text] [Related]
12. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076 [TBL] [Abstract][Full Text] [Related]
13. Comparison of glucose/xylose cofermentation of poplar hydrolysates processed by different pretreatment technologies. Lu Y; Warner R; Sedlak M; Ho N; Mosier NS Biotechnol Prog; 2009; 25(2):349-56. PubMed ID: 19319980 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production. Li H; Kim NJ; Jiang M; Kang JW; Chang HN Bioresour Technol; 2009 Jul; 100(13):3245-51. PubMed ID: 19289273 [TBL] [Abstract][Full Text] [Related]
15. Aerobic and anaerobic ethanol production by Mucor circinelloides during submerged growth. Lübbehüsen TL; Nielsen J; McIntyre M Appl Microbiol Biotechnol; 2004 Feb; 63(5):543-8. PubMed ID: 12879305 [TBL] [Abstract][Full Text] [Related]
16. Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Saha BC; Iten LB; Cotta MA; Wu YV Biotechnol Prog; 2005; 21(3):816-22. PubMed ID: 15932261 [TBL] [Abstract][Full Text] [Related]
17. Use of dynamic step response for control of fed-batch conversion of lignocellulosic hydrolyzates to ethanol. Nilsson A; Taherzadeh MJ; Lidén G J Biotechnol; 2001 Jul; 89(1):41-53. PubMed ID: 11472798 [TBL] [Abstract][Full Text] [Related]
18. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Katahira S; Mizuike A; Fukuda H; Kondo A Appl Microbiol Biotechnol; 2006 Oct; 72(6):1136-43. PubMed ID: 16575564 [TBL] [Abstract][Full Text] [Related]
19. Effect of various factors on ethanol yields from lignocellulosic biomass by Thermoanaerobacterium AK₁₇. Almarsdottir AR; Sigurbjornsdottir MA; Orlygsson J Biotechnol Bioeng; 2012 Mar; 109(3):686-94. PubMed ID: 22012653 [TBL] [Abstract][Full Text] [Related]
20. Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae. Wright J; Bellissimi E; de Hulster E; Wagner A; Pronk JT; van Maris AJ FEMS Yeast Res; 2011 May; 11(3):299-306. PubMed ID: 21251209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]