These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 16216082)
1. Escherichia coli cyclopropane fatty acid synthase: is a bound bicarbonate ion the active-site base? Courtois F; Ploux O Biochemistry; 2005 Oct; 44(41):13583-90. PubMed ID: 16216082 [TBL] [Abstract][Full Text] [Related]
2. The activity of Escherichia coli cyclopropane fatty acid synthase depends on the presence of bicarbonate. Iwig DF; Uchida A; Stromberg JA; Booker SJ J Am Chem Soc; 2005 Aug; 127(33):11612-3. PubMed ID: 16104732 [TBL] [Abstract][Full Text] [Related]
3. Isotope and elemental effects indicate a rate-limiting methyl transfer as the initial step in the reaction catalyzed by Escherichia coli cyclopropane fatty acid synthase. Iwig DF; Grippe AT; McIntyre TA; Booker SJ Biochemistry; 2004 Oct; 43(42):13510-24. PubMed ID: 15491158 [TBL] [Abstract][Full Text] [Related]
4. An active site mutant of Escherichia coli cyclopropane fatty acid synthase forms new non-natural fatty acids providing insights on the mechanism of the enzymatic reaction. E G; Drujon T; Correia I; Ploux O; Guianvarc'h D Biochimie; 2013 Dec; 95(12):2336-44. PubMed ID: 23954860 [TBL] [Abstract][Full Text] [Related]
6. Insight into the reaction mechanism of the Escherichia coli cyclopropane fatty acid synthase: isotope exchange and kinetic isotope effects. Guangqi E; Lesage D; Ploux O Biochimie; 2010 Oct; 92(10):1454-7. PubMed ID: 20538038 [TBL] [Abstract][Full Text] [Related]
7. Characterization and site-directed mutagenesis of aspen lignin-specific O-methyltransferase expressed in Escherichia coli. Meng H; Campbell WH Arch Biochem Biophys; 1996 Jun; 330(2):329-41. PubMed ID: 8660663 [TBL] [Abstract][Full Text] [Related]
8. Catalytic mechanism of C-C hydrolase MhpC from Escherichia coli: kinetic analysis of His263 and Ser110 site-directed mutants. Li C; Montgomery MG; Mohammed F; Li JJ; Wood SP; Bugg TD J Mol Biol; 2005 Feb; 346(1):241-51. PubMed ID: 15663941 [TBL] [Abstract][Full Text] [Related]
9. Evidence for a catalytic dyad in the active site of homocitrate synthase from Saccharomyces cerevisiae. Qian J; Khandogin J; West AH; Cook PF Biochemistry; 2008 Jul; 47(26):6851-8. PubMed ID: 18533686 [TBL] [Abstract][Full Text] [Related]
10. Kinetic mechanism of uracil phosphoribosyltransferase from Escherichia coli and catalytic importance of the conserved proline in the PRPP binding site. Lundegaard C; Jensen KF Biochemistry; 1999 Mar; 38(11):3327-34. PubMed ID: 10079076 [TBL] [Abstract][Full Text] [Related]
12. Fatty acid synthesis. Role of active site histidines and lysine in Cys-His-His-type beta-ketoacyl-acyl carrier protein synthases. von Wettstein-Knowles P; Olsen JG; McGuire KA; Henriksen A FEBS J; 2006 Feb; 273(4):695-710. PubMed ID: 16441657 [TBL] [Abstract][Full Text] [Related]
13. Probing the sterol binding site of soybean sterol methyltransferase by site-directed mutagenesis: functional analysis of conserved aromatic amino acids in Region 1. Nes WD; Sinha A; Jayasimha P; Zhou W; Song Z; Dennis AL Arch Biochem Biophys; 2006 Apr; 448(1-2):23-30. PubMed ID: 16271698 [TBL] [Abstract][Full Text] [Related]
14. The utility of molecular dynamics simulations for understanding site-directed mutagenesis of glycine residues in biotin carboxylase. Bordelon T; Nilsson Lill SO; Waldrop GL Proteins; 2009 Mar; 74(4):808-19. PubMed ID: 18704941 [TBL] [Abstract][Full Text] [Related]
15. Catalytic mechanism of SHCHC synthase in the menaquinone biosynthesis of Escherichia coli: identification and mutational analysis of the active site residues. Jiang M; Chen X; Wu XH; Chen M; Wu YD; Guo Z Biochemistry; 2009 Jul; 48(29):6921-31. PubMed ID: 19545176 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of mycolic acid cyclopropane synthase: a theoretical study. Liao RZ; Georgieva P; Yu JG; Himo F Biochemistry; 2011 Mar; 50(9):1505-13. PubMed ID: 21241051 [TBL] [Abstract][Full Text] [Related]
17. Structure-activity studies of the inhibition of FabI, the enoyl reductase from Escherichia coli, by triclosan: kinetic analysis of mutant FabIs. Sivaraman S; Zwahlen J; Bell AF; Hedstrom L; Tonge PJ Biochemistry; 2003 Apr; 42(15):4406-13. PubMed ID: 12693936 [TBL] [Abstract][Full Text] [Related]
19. Dissecting the catalytic mechanism of betaine-homocysteine S-methyltransferase by use of intrinsic tryptophan fluorescence and site-directed mutagenesis. Castro C; Gratson AA; Evans JC; Jiracek J; Collinsová M; Ludwig ML; Garrow TA Biochemistry; 2004 May; 43(18):5341-51. PubMed ID: 15122900 [TBL] [Abstract][Full Text] [Related]
20. [Investigations on the fatty acid composition of lipids from Salmonella minnesota S and R forms (author's transl)]. Ferber E; Schlecht S; Fromme I Zentralbl Bakteriol Orig A; 1976 Nov; 236(2-3):275-87. PubMed ID: 1015016 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]