These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 16216226)
1. Inhibitory modulation of ATP-sensitive potassium channels by gallate-ester moiety of (-)-epigallocatechin-3-gallate. Baek WK; Jang BC; Lim JH; Kwon TK; Lee HY; Cho CH; Kim DK; Shin DH; Park JG; Lim JG; Bae JH; Bae JH; Yoo SK; Park WK; Song DK Biochem Pharmacol; 2005 Nov; 70(11):1560-7. PubMed ID: 16216226 [TBL] [Abstract][Full Text] [Related]
2. Uncoupling by (--)-epigallocatechin-3-gallate of ATP-sensitive potassium channels from phosphatidylinositol polyphosphates and ATP. Jin JY; Park SH; Bae JH; Cho HC; Lim JG; Park WS; Han J; Lee JH; Song DK Pharmacol Res; 2007 Sep; 56(3):237-47. PubMed ID: 17656102 [TBL] [Abstract][Full Text] [Related]
3. Iptakalim, a vascular ATP-sensitive potassium (KATP) channel opener, closes rat pancreatic beta-cell KATP channels and increases insulin release. Misaki N; Mao X; Lin YF; Suga S; Li GH; Liu Q; Chang Y; Wang H; Wakui M; Wu J J Pharmacol Exp Ther; 2007 Aug; 322(2):871-8. PubMed ID: 17522344 [TBL] [Abstract][Full Text] [Related]
4. Functional modulation of the ATP-sensitive potassium channel by extracellular signal-regulated kinase-mediated phosphorylation. Lin YF; Chai Y Neuroscience; 2008 Mar; 152(2):371-80. PubMed ID: 18280666 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of ATP-sensitive K+ channels by taurine through a benzamido-binding site on sulfonylurea receptor 1. Park EJ; Bae JH; Kim SY; Lim JG; Baek WK; Kwon TK; Suh SI; Park JW; Lee IK; Ashcroft FM; Song DK Biochem Pharmacol; 2004 Mar; 67(6):1089-96. PubMed ID: 15006545 [TBL] [Abstract][Full Text] [Related]
6. Molecular mechanisms of the inhibitory effects of clonidine on vascular adenosine triphosphate-sensitive potassium channels. Kawahito S; Kawano T; Kitahata H; Oto J; Takahashi A; Takaishi K; Harada N; Nakagawa T; Kinoshita H; Azma T; Nakaya Y; Oshita S Anesth Analg; 2011 Dec; 113(6):1374-80. PubMed ID: 22003223 [TBL] [Abstract][Full Text] [Related]
7. In vitro electrocardiographic and cardiac ion channel effects of (-)-epigallocatechin-3-gallate, the main catechin of green tea. Kang J; Cheng H; Ji J; Incardona J; Rampe D J Pharmacol Exp Ther; 2010 Aug; 334(2):619-26. PubMed ID: 20484151 [TBL] [Abstract][Full Text] [Related]
8. (-)-Epigallocatechin gallate, the most active polyphenolic catechin in green tea, presynaptically facilitates Ca2+-dependent glutamate release via activation of protein kinase C in rat cerebral cortex. Chou CW; Huang WJ; Tien LT; Wang SJ Synapse; 2007 Nov; 61(11):889-902. PubMed ID: 17663453 [TBL] [Abstract][Full Text] [Related]
9. Glimepiride block of cloned beta-cell, cardiac and smooth muscle K(ATP) channels. Song DK; Ashcroft FM Br J Pharmacol; 2001 May; 133(1):193-9. PubMed ID: 11325810 [TBL] [Abstract][Full Text] [Related]
10. Functional effects of mutations at F35 in the NH2-terminus of Kir6.2 (KCNJ11), causing neonatal diabetes, and response to sulfonylurea therapy. Proks P; Girard C; Baevre H; Njølstad PR; Ashcroft FM Diabetes; 2006 Jun; 55(6):1731-7. PubMed ID: 16731836 [TBL] [Abstract][Full Text] [Related]
11. Mutations at the same residue (R50) of Kir6.2 (KCNJ11) that cause neonatal diabetes produce different functional effects. Shimomura K; Girard CA; Proks P; Nazim J; Lippiat JD; Cerutti F; Lorini R; Ellard S; Hattersley AT; Barbetti F; Ashcroft FM Diabetes; 2006 Jun; 55(6):1705-12. PubMed ID: 16731833 [TBL] [Abstract][Full Text] [Related]
12. Fluorescence microscopy studies with a fluorescent glibenclamide derivative, a high-affinity blocker of pancreatic beta-cell ATP-sensitive K+ currents. Zünkler BJ; Wos-Maganga M; Panten U Biochem Pharmacol; 2004 Apr; 67(8):1437-44. PubMed ID: 15041461 [TBL] [Abstract][Full Text] [Related]
13. Scavenging of 14-3-3 proteins reveals their involvement in the cell-surface transport of ATP-sensitive K+ channels. Heusser K; Yuan H; Neagoe I; Tarasov AI; Ashcroft FM; Schwappach B J Cell Sci; 2006 Oct; 119(Pt 20):4353-63. PubMed ID: 17038548 [TBL] [Abstract][Full Text] [Related]
14. Effect of 3-O-octanoyl-(+)-catechin on the responses of GABA(A) receptors and Na+/glucose cotransporters expressed in xenopus oocytes and on the oocyte membrane potential. Aoshima H; Okita Y; Hossain SJ; Fukue K; Mito M; Orihara Y; Yokoyama T; Yamada M; Kumagai A; Nagaoka Y; Uesato S; Hara Y J Agric Food Chem; 2005 Mar; 53(6):1955-9. PubMed ID: 15769120 [TBL] [Abstract][Full Text] [Related]
15. Effects of (-) epigallocatechin-3-gallate on Na(+) currents in rat dorsal root ganglion neurons. Kim TH; Lim JM; Kim SS; Kim J; Park M; Song JH Eur J Pharmacol; 2009 Feb; 604(1-3):20-6. PubMed ID: 19111536 [TBL] [Abstract][Full Text] [Related]
16. Relationship between the biological activities of methylated derivatives of (-)-epigallocatechin-3-O-gallate (EGCG) and their cell surface binding activities. Yano S; Fujimura Y; Umeda D; Miyase T; Yamada K; Tachibana H J Agric Food Chem; 2007 Aug; 55(17):7144-8. PubMed ID: 17661493 [TBL] [Abstract][Full Text] [Related]
18. Methylation of green tea polyphenols affects their binding to and inhibitory poses of the proteasome beta5 subunit. Daniel KG; Landis-Piwowar KR; Chen D; Wan SB; Chan TH; Dou QP Int J Mol Med; 2006 Oct; 18(4):625-32. PubMed ID: 16964415 [TBL] [Abstract][Full Text] [Related]
19. Epigallocatechin gallate dose-dependently induces apoptosis or necrosis in human MCF-7 cells. Hsuuw YD; Chan WH Ann N Y Acad Sci; 2007 Jan; 1095():428-40. PubMed ID: 17404055 [TBL] [Abstract][Full Text] [Related]
20. Interaction of epicatechins derived from green tea with rat hepatic cytochrome P-450. Wang ZY; Das M; Bickers DR; Mukhtar H Drug Metab Dispos; 1988; 16(1):98-103. PubMed ID: 2894963 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]